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Resonances

* Are localized metastable states with finite
lifetime.

e In Hermitian Quantum Mechanics resonances
cannot be represented by a single state of the
Hamiltonian.

 The resonance is depicted by a large density of
states around the resonance energy.

* Resonances are associated with the complex poles
of the scattering matrix.
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Complex Scaling

In order to avoid the divergence of the resonance
wavefunction it I1s convenient to scale the coordinate
such that : x — xe"

This can be done by the following scaling operators:
A ié?xi ~
S——e * Suchthat Sy, —>0 as »x—

The Schrodinger equation takes the form:

AN A AN ~

(SHS™Y)(Sy)=E(Sw) = H,w, =E,p,



Complex scaling: Reviews
W. P. Reinhardt, Annu. Rev. Phys. Chem. 33, 223 (1982)

N. Moiseyev. Phys. Rep. 302, 211 (1998)

Reflection free CAPs by the Smooth-Exterior-Scaling transformation

N. Moiseyev, J. Phys. B, 31, 1431, (1998)



Hermitian (conventional ) QM variational calculations

|

(numerical exact)

Bound, , continuum states for 1-atom in 1D trap



Non-hermitian QM variational calculations
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Non-interacting atoms in 1D optical trap
(odd-parity resonances obtained in 3D spherical symmetric potential)



BEC-model Hamiltonian
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a, >0  Bound to resonance state transition

a, <0 Resonance to bound state transition



OPEN QUESTIONS

* How resonances can be calculated for the NLSE (GP)?

 In 3D, negative scattering length BEC: are the
resonance/bound-state transitions take place before the
collapse of the BEC ?

 How the fraction of the atoms that are tunneled through the
external potential barriers can be extracted from the GP
calculations ?



How resonances can be calculated
for the NLSE (GP)?

A: Complex scaling:
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Resonances for BEC with a positive scattering length
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FIG. 1. The rate of decay ~ of a single atom and the total rate of decay per atom I' as a

function of the non-linear parameter U (see Eq. 1 and text). The mset shows the external trap

potential used.



Energy and Chemical potential
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FIG. 2. The chemical potential pfthe real part of the complex eigenvalue in Eq. 1) and the
mean-field energy of the BEC per atom E (the real part of the complex energy £/N, see Eq. 2 n

the text) as a function of the non-linear parameter U,
Q: Why Ec<0? A(?): The threshold for 1-atom (chemical

pot) is 0 . The threshold of E <0 is due to fraction of N atoms
that tunnel through the potential barriers



How resonances can be calculated
for the NLSE (GP)?

B: Smooth-Exterior Complex Scaling (SES):

0;=F(F)  To=T Vs V() =V(F,(F)) (T; —0;) = o(F,(F;) - F, (1))
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Resonance to bound-state transitions for BEC
with negative scattering length

( SES-CAP approximated by a local CAP)
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Figure 1. One dimension, Shown is the Rei ) and Imig) versus | U] for the potential in the form
of & harmonic well times the Gaussian envelope { see equation (2, with & = (£, Frgs - = 0.2,
Solid curves: results of the numerical method utilizing a complex scaling method. Dashed curves:
the vanational WEB approximation. The cnitical pomnt for the comversion of the resonance into a

bound state 1= |-L"ﬁ’"| = | .09,



2D BEC
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Figure 2. Two dimensions. Same as in figare | for two different values of the potential-shape
parameter, & = (.16 and & = (0. 12 (the upper and lower curves, respectively; the analvtical curves
for Re(g) at both values of & completely overlap). Regions of the resonance, bound state and
collapse ar indicated.



3D BEC
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Figure X Three dimensions, The width of the msonance stnb.'E. versus energy for three different
wells with Vil = Viso) (ie., Vo = 05 o = (#o/f6am)- = 002,003 and 004, For the
definition of &, see the label attached to the vertical axis. In each case, the collapse point 18 reached
before the msonance can be stabilized into a bound state. The vanational WEB approximation
produces similar esults (not shown here ),
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In 3D only the odd states survive
In 3D NO BOUND STATE
In 3D Only ONE resonance tunneling state survives



3D optical trap
Resonance to bound-state transition BEFORE collapse of BEC
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Figure 4. Three dimensions. Same asinfigure | forthe potential (2) with @ = 0L02 and ¥y = —0.5
(20 that Vi) = Vimo) — 0L.8) The offset ¥, <= 0 allows for the stabilization of the resonance into

a bound state, unlike the cass shown in figure 3.



Q: Can we avoid the collapse in 3D
BEC ?

In spherical symmetric optical trap

The key point is to associate the collapse phenomena with
the unbounded spectrum from below due to the -|U|/r"*2 term
which acts like a “black hole”

Therefore, V(r) should be LESS singular than 1/r*2 at the origion

The excluded volume idea: V(r)=c0 when r<r,
With Cederbaum we proved for Harmonic potential:

L ot =L 0@ do(fdr where 0<3,(5) <t

0

NO COLLAPSE



AS WE HAVE SHOWN BEFORE
Energy and Chemical potential
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FIG. 2. The chemical potential pfthe real part of the complex eigenvalue in Eq. 1) and the
mean-field energy of the BEC per atom E (the real part of the complex energy £/N, see Eq. 2 n

the text) as a function of the non-linear parameter U,
Q: Why Ec<0? A(?): The threshold for 1-atom (chemical

pot) is 0 . The threshold of E <0 is due to fraction of N atoms
that tunnel through the potential barriers



Q: Why Ec<0 ?
A due to fragmentation
#=u;)=0 E=EU;)<0

n,—atoms in the potential well occupy the ¢ orbital
n, —atoms tunnel through the potential barriers occupy the y orbital

Fra_tction remains X n, 1—X :&
Inside the trap N N

U=2(N-D02N B (X,U) = XE(XU) +(1— X)E, [(1- X)U]
Pitaevskii  (Rev.Mod.Phys. 1999) E =0
Egec (X,U) = XE(XU)



Transition from bound to a resonance state (positive
scattering length) occurs at: Uc=0.8279

Fraction of atoms inside the potential well X

Bound/resonance transition Xc(U)=Uc/U

The bound/resonance transition should happen at
the minimal energy where:

aEBE(:
OX X (V)

=0




The bound/resonance transition should happen at the minimal energy where:

aEBEC — O
X X:(U)
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FId. 3. The energy per atom Egeo (X, 07) az a function of the fraction of atoms X which
remains in the trap while a fraction 1-X of the condensate has tunneled through the barriers into
the contimanm. FEach curwve shown is for a different svalae of the non-linear parameter 1T, From
bottom to top the j-th curve in black is associated with U=0.5 + 0.05(j-1). The blue curve is for
Il = .. The mmima of the Fgpgpo curves are at X=MXc (sclid dots) and play a central role m

nnderstanding the tunneling (see text).



 How resonances can be calculated for the NLSE (GP)?

A: By using complex scaling with inversed complex scaled scattering
length, or by introducing the reflection-free CAPs derived from the
smooth-exterior-scaling procedure.

In 3D BEC (negative scattering length): are the resonance/bound-state transition
take place before the collapse of the BEC ?

A: Construct an optical trap with a resonance state close to the threshold

OR a spherically symmetric trap with excluded volume

to prevent the atoms to approach the central point r=0.

How the fraction of the atoms that are tunneled through the external
potential barriers can be extracted from the GP calculations ?

A: Define E(X,U)=XE(X,U) where E the mean energy per

atom obtained in GP calculations where,

X=(number of atoms remain inside the trap)/N

Resonance to bound state transitions occur at Xc,

OE (X ,U )
o X -




['==2ImE I1s function of N

Rate of decay of N atoms in the well to
n_1<N atoms where (N-n_1) tunnel
through the poetntail barriers.
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