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The superfluid transition in an ultracold two-component atomic Fermi gas is analyzed in the case where the two components have different densities. We describe a superfluid state which spontaneously breaks the rotational-
symmetry by deforming the Fermi surfaces of both species into ellipsoidal form. At relatively large hyperfine-spin asymmetries (e.g., around 20% for kF |a| = 1), this deformation is shown to help the appearance of pairing,
which in the rotationally-symmetric (BCS) case would be forbidden by Pauli blocking. The prospects for experimental detection of such a deformed Fermi surface (DFS) phase are discussed.

INTRODUCTION
The present capabilities of cooling of fermionic atomic
ensembles to temperatures that are a fraction∼ 0.1 −
0.3 of their Fermi temperature [1] allow for reason-
ableexpectations to observe a superfluid transition
in ultracold fermionic systems, in direct analogy to
BCS superconductivity [2], as the trapped atoms are
in the quantum-degenerate regime where an attractive
interaction can drive the Cooper instability. Moreover,
the strength of the two-body interactions can be tuned
using a Feshbach resonance by varying an external
magnetic field [3]; thus the entire range from weak to
strong couplings can be probed.
At the very low temperatures and densities reached in
the experiments, onlys-wave collisions (characterized
by the scattering lengtha), are relevant for the descrip-
tion of these systems. Since Pauli’s principle forbidss-
wave interactions between indistinguishable fermions,
the pairing should appear between atoms in different
hyperfine states, as in the experiments realized with
6Li and 40K [1,4,5].
TheBCS theory predicts a suppression of the pair-
ing correlations when the Fermi energies or, equiv-
alently, the densities of the two hyperfine states are
different. In the low density limitkF |a| � 1 the
dependence of the pairing gap∆ at the Fermi sur-
face (FS) on the total densityρ and density asymmetry
α = (ρ1 − ρ2)/ρ is given by [6]
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∆0

=

√
1− 4µ

3∆0
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where∆0 ' 8e−2µ exp [−π/(2kF |a|)] � 1 is the
gap in symmetric matter andµ is the chemical po-
tential. Therefore,the (BCS) gap disappears for
asymmetries α > αmax = 3∆0/(4µ), which in
this limit is a very small number. For example,
for the pairing of6Li atoms in the hyperfine states
|1〉 = |F = 3/2, mF = 3/2〉 and |2〉 = |3/2, 1/2〉,
for which the triplet scattering length isa = −2160aB

(aB = Bohr radius), at a densityρ = 3.8× 1012 cm−3

(⇒ kF |a| = 0.55), the maximum asymmetry at which
BCS pairing is possible is onlyαmax = 0.07 ≡ 7%.
In this work we show that the superfluid state in ul-
tracold atomic gases can persist for density asym-
metries α > αmax due to a spontaneous deforma-
tion of the FS’sof the two-hyperfine states in momen-
tum space, thus breaking the global rotational symme-
try of the space from O(3) down to O(2) [7].

THE MODEL
Consider a uniform gas of Fermi atoms with two hy-
perfine states, which we assign labels 1 and 2. The
model Hamiltonian that describes our system is

Ĥ =
∑
p,σ

εpâ
†
pσâpσ − g

∑
pp′

â†p′,1â
†
−p′,2â−p,2âp,1, (2)

where â†pσ and âpσ are the creation and annihilation
operators of a state with momentump, pseudospin
σ(= 1, 2) and energyεp = p2/2m, where m is
the atom bare mass. The coupling constant is de-
termined by thes-wave scattering lengtha < 0 as
g = 4π~2|a|/m.
The mean-field solutions for the Hamiltonian (2) can
be obtained by diagonalizing it with the familiar Bo-
golyubov transformations:̂bp,1 = upâp,1+vpâ

†
−p,2 and

b̂p,2 = upâp,2 − vpâ
†
−p,1, with u2

p + v2
p = 1. A varia-

tional minimization of the energy with respect to the
parameterup (or vp) leads to the gap equation

∆ = g

∫
dp

(2π)3
up vp [1− f(E1)− f(E2)] , (3)

wheref(E) = [1 + exp(E/T )]−1, T is the tempera-
ture. The quasiparticle spectra are defined as

E1/2 =
√

ξ2
S + ∆2 ± ξA, (4)

where the symmetrizedξS = 1
2
(ε1 + ε2) and anti-

symmetrizedξA = 1
2
(ε1 − ε2) spectra are written in

terms of the normal state spectraεσ = εp − µσ, and
u2

p = [1 + 2ξS/(E1 + E2)]. The occupations of the
states in the superfluid phase,np,σ = u2

pf(Eσ) +

v2
p[1 − f(E−σ)], obey the normalization conditions

ρσ =
∑

p np,σ, which are ensured in the calculations
by adjusting the chemical potentialsµσ of the hyper-
fine states.

FIG. 1 Dependence of
the gap (upper panel)
and the free-energy dif-
ference (lower panel) on
δε for kF a = 0.55, at
T = 10 nK, ρ = 3.8 ×
1012 cm−3, andα = 0.0
(black line), α = 0.02
(red), α = 0.04 (blue),
α = 0.05 (yellow) and
α = 0.057 (green).

DEFORMING THEFERMI SURFACES
Fermi surfaces (FS’s) are defined byεσ = εp−µσ = 0.
When the chemical potentials are isotropic ink-space,
the FS’s are spherical. Relaxing this assumption, we
expand the quasiparticle spectra in spherical harmon-
ics εσ =

∑
l εlσPl(x), wherex is the cosine of the an-

gle formed by the particle momentum and a randomly
chosen symmetry breaking axis;Pl(x) are the Legen-
dre polynomials. Thel = 1 terms break the transla-
tional symmetry by shifting the FS’s without deform-
ing them; they are ignored below. Truncating the ex-
pansion atl = 2, we rewrite the spectra as [7]

εσ = εp − µσ

(
1 + ησx

2
)
, (5)

where the parametersησ describe the quadrupolar de-
formation of the FS’s. It is convenient to work with
δε = (η1 − η2)/2 andΞ = (η1 + η2)/2.

FIG. 2 FS’s for an asym-
metric system in the un-
deformed (thin) and de-
formed (thick) cases. The
green boxes mark the re-
gions where pairing oc-
curs.

We study the energy of the superfluid state at fi-
nite deformations to see whether they lower the en-
ergy of the system and lead to a new stable ground
state. We work atΞ = 0 and fixedT , and look into
the free energies of the deformed superfluid state and
the undeformed normal one, as a function of the sin-
gle parameterδε. For the superfluid phase we have
FS = Ekin + Epot − TSS, with the entropySS

defined by the well-known combinatorial expression,
Ekin =

∑
p,σ εpnp,σ and, for a contact interaction,

Epot = −∆2/g. For the undeformed normal state, set
∆ = 0 = δε. As the interaction is of the contact form,
the gap equation and the superfluid kinetic energy need
a regularization. The regularized gap equation is

2
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(
1√

ξ2
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− γ

εp

)
×

[1− f(E1)− f(E2)] ; (6)

γ = 1 andΛ → ∞ corresponds the common prac-
tice [2] while γ = 0 and finiteΛ corresponds to the
cut-off regularization of the gap equation, with which
Ekin is evaluated.Λ is fixed by requiring both regu-
larization schemes to give the same gap.

RESULTS AND DETECTION
Eq. (6) was solved numerically for givenρ, α for a
couplingkF a = 0.55 at densityρ = 3.8 × 1012 cm−3

(TF = 942 nK) andT = 10 nK. For δε = 0, ξA re-
duces in Eq. (3) the phase space coherence between
the quasiparticles that pair. This blocking is responsi-
ble for the reduction of the gap with increasing asym-
metry and its disappearance aboveα ' 7%. Allow-
ing for deformations introduces a modulation ofξA

with the cosinex of the polar angle restoring the
phase space coherence for some values ofx (and
lowering it for the remainder values). The result
(Fig. 1) is an increaseof the gap for finite defor-
mations. At extreme large asymmetries the gap exists
only for the deformed state, with lower and upper crit-
ical deformations marking the pairing regions. [δε > 0
corresponds to a cigar-like deformation of the majority
and pancake-like deformation of the minority popula-
tion’s FS’s (Fig. 2).]
The same calculations were carried outfor larger cou-
plings kF a = 1 and kF a = 2, obtaining larger
gaps and allowed density asymmetries: the gaps
found in the symmetric case are 193 and 375 nK,
respectively, and the reentrance effect is observed in
each case forasymmetries around 18% and 30%,
which are rather large values that should be possible
to observe experimentally by the anisotropy of the mo-
menta distributions of both species in typical time-of-
flight measurements (Fig. 3). The pairing disappears
above asymmetries 22% and 43%, respectively.

FIG. 3 Momentum occupa-
tions forkF a = 0.55 for α =
0 = δε (solid); α = 0.05 and
δε = 0 (dashed),δε = 0.1,
x = 0 (dashed-dotted) and
x = 1 (short-dashed). The
lower curves show the differ-
ence between thex = 1 and
x = 0 occupations forα =
0.05, δε = 0.1.
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