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Poll on the superfluidity phenomenon

Do you think that the absence of damping of a relative motion
between the normal fluid and superfluid is fully understood 7

Yes O
Answer: No O
I don't know (O



Abstract:

We present the microscopic kinetic theory of a homogeneous dilute Bose con-
densed gas in the generalized random phase approximation (GRPA), which
satisfies the following requirements: 1) the mass, momentum and energy
conservation laws; 2) the H-theorem; 3) the superfluidity property and 4) the
recovery of the Bogoliubov theory at zero temperature. Contrary to previous
approaches, these requirements impose a totally different understanding on
the superfluidity phenomenon. Indeed, as long as the Bose gas is stable, no
binary collision happens between condensed and normal atoms due to the
ability of the condensate wavefunction to attenuate totally the interatomic
forces. AS a consequence, no relaxation of any initial relative velocity be-
tween the normal and superfluid occurs and the superfluid moves without any
friction. Furthermore, the condensate influences the binary collisional process
between the two normal atoms, in the sense that their interaction force results
from the mediation of a Bogoliubov collective excitation traveling throughout
the condensate. In this paper, we discuss about a 'time of flight' experiment
which could allow to validate the GRPA approach.
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" Do not forget Boltzmann when describing a BEC "

S=kInW

dH(t)
i <0

(2 +viVe+ £V, f1 = [dQ [ d®vao(Q)|vi — va|(f3f] — f2f1)




Previous works: 1) Boltzmann-Nordheim QKE
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Bose Enhancement — Stimulated scattering
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where ¢, = k?/(2m)

e Superfluidity NOT explained !l always damping of relative velocity

e H-theorem = Sy ~ Inng = Huge fluctuations dng/ne ~ 1
— GC ensemble pathology

= Need higher order theory !



Landau criterion — necessary condition
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Phonon: 85

Moving ext. obj.: —vg — —V]
Energy-momentum conservation: Mvg?/2—Mv.?/2 = €&

= Moving condensate frame: wq = eff +vs.q>0

— normal fluid considered as a WHOLE

— Mvs = —-Mvi+q



2) Bogoliubov-like Kinetic theory

Spontaneous symmetry breaking U(1): e = /c?q* + (%)2 = wq = € + ks.q

Beliaev damping: Wi = Wk,+q + ww—q — balanced process
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= persistent relative velocity if wqg > 0

i.e. |vs| = |ks|/m < ¢ = \/4maN/m?V (sound velocity)
otherwise instability

Kinetic theory involving ONLY Goldstone bosons
Imamovic-Tomasovic & Griffin, J. Low Temp. Phys. 122, 617 (2001)



Do not forget Lavoisier (1743-1794)
when describing a BEC
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"Matter is neither created or destroyed”




Problem with conservation law for particle number

If fx Bogoliubov excitations distribution
ux and v, are the parameters of the Bogoliubov transformation

Beliaev process conserves

n, + Y fi
k

incompatible with the conservation of the total particle number

N=> m=ng+ Y (up+vd)fi+ v
k k



Kinetic theory of a Bose condensed gas (BEC)

"The situation is not entirely clear”
(Nobel Prize 2003)

THE CHALLENGE — Derivation in a systematic way of kinetic equations (QKE)

for quasi-particle distribution function valid for a dilute Bose gas and verifying:

1. Conservation laws: mass, momentum and energy density
= Hydrodynamic equations

2. Second principle of thermodynamics (H-theorem)
3. Superfluidity

4. Bogoliubov theory at zero temperature



Do not forget Hohenberg and Martin (Ann. Phys. 34, 291
(1965)) when describing a BEC at finite temperature

1. Girardeau & Arnowitt (HFB), not gapless
2. Bogoliubov, not conserving
3. Beliaev, not conserving

4. Popov approximation, not conserving

5. Fliesser, Reidl, Szépfalusy, Graham (RPA),
Phys. Rev. A 64 013609 (2001)



RPA — far field limit: na3/V <« 1

Excitation operator: Pq = Zk Pk,q — Zk ClT(Ck_|_q — Pk,q%=0 K Pk0 — Nk
At equilibrium: (pq)? = dq,0nk,

Response to an external perturbation: ¢e.:(q,w)
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Susceptibility:
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Induced potential: ¢ror(q, w) = Gext(q,w) + (Uq/V ) {pq)



Dynamic dielectric function:

c U
Rlqo) = 2ol@@) g Vs gy ] 0 resonance at Bog. frequency
drot(q, w) 1% oo O response
Assume
- ¢ext(q,w) originates from e

an excited particle transition k — k — q

- Golden rule e, + ex = €k 4q + €k—q
| (pext(q 00)

= K(q,w) — 00 = ¢rot(q,w) — 0

No interaction potential anymore Il = NO COLLISION

Remarks:

a) Same results for condensed outgoing particle

b) Two conditions for this attenuation:
-Reservoir of potential energy of the condensate
-Macroscopic and coherent condensate



RPA —> Dielectric => Attenuation of interaction forces

\/eff(r) :\/Coul(r)/ K
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Generalized RPA (see Nozieres and Pines)

tpk,q [px.q, H] = Two equations of motion for operators:

1) Quasi-particle number equation
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2) Excitation equation in GRPA: pxq < nk
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1) scattering solution wyq = €xk4q — €k
2) scattering solution wy,  and wy,_qq collective solution A(q,w) =0

For a contact potential:
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Kinetic Equation for a stable gas (yq > 0)

1) Homogeneous Bose gas
2) Thermodynamic limit
3) Generalized RPA
4) Instantaneous collisions (Markovian QKE)
5) No fragmentation of the condensate
(one macroscopic mode)

Approximations:

Correlation function: (pw _qpxq) = (nk+1)nwdi—x qF+nKnwdq,0(1 =0k k) — 4,00k w7k +9q (k, k')

Average on operator equations of motion =-:
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We obtain
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Bose condensed gas = Dielectric with huge power to annihilate the
interaction potential for ny. macroscopic

= COLLISION BLOCKADE !l
= nk, constant of motion whatever kg provided stable gas

1) QKE conserves particle number, momentum and kinetic energy and verifies
the H-theorem

2) Opposite case ny /V — 0 = K(q,w) = K(q,w) = K,(q,w)

3) Equilibrium solution:
1
exp [B(ex —k.vp — )] — 1

/ /
nk:nlfq:

= superfluidity possible v, # ks/m !



LLandau criterion

Stable condensate <= v4 > 0

1
exp(fBex) — 1

For weak depletion and n/}! =

= b — k4> 0= |k|/m<c

Otherwise, the condensate is unstable =

— QKE is different and allows particle exchange



Weakly inhomogeneous Kinetic equations: l,; > V/(Neo)

W(r,t) = V/ne(r,0)e?™)  with  ke(r,t) = V0(r, t)

i 2
W) = ot vc<r,t>1 W(r, 1)
6 / [ k /
Enk(r, t)y = —E.Vr + ViVe(r,t). V| n (r,t) + Cx[nw (r, t); ks(r,t)]
where
dra

Ve(r,t) = Veur(r) + W

W(r, )+ 2Zni<(r,t)]

k

dma
Ve(r,t) = Veur(r) + —
mV

2/ W (r, 1) +2an<r,t>]

k

Hartree-Fock energy



Superfluid universe at finite temperature for stable gas

Stationary solution: W(r,t) = e *t\W (1)

\Via 4dra
o Vo) + W)+ 2N W) = )

_2m

3/2

e e m _ r 8ra r 2 ca(p

N&(r) = E "i{q(r) =V (ﬁ) 932 (eﬂ[ue Vi (r) 222 (W (1) 24 N2 ( ))])
k

- describe any non dissipative structures like vortices
- e = e NOt required ! >< ensemble statistical physics

e.g.: For a non zero relative velocity: vs = ks/m = e — pfte = mvs?/2



Analogy with plasmon theory: Wyld-Pines interpretation
Plasma collective excitation

Condensate collective excitation

N\

Feymann diagram of the interaction of two quasi-particles mediated by the
collective excitation
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For a weakly depleted gas, the condenson has the Bogoliubov energy spectrum
wq = €8 and a decay rate 2+,

q
'n,/ == neq == 1
TR T exp [B(e — w)] — 1
ca 1
Jo' = exp (Bwq) — 1

Adiabatic approximation — eliminate f, and recover the QKE for ni{ only

valid if 7.1 ~ vq > 7.1 ~ Neo/[V(8m) /2]



Summary

-GRPA — Different theory to be compared with others:
1. collision blockade
2. three fluids model: condensate, mediating condenson, quasi-particle

3. allows to recover Bogoliubov theory at T' = 0, dynamic structure factor
S(q,w), collective excitations

4. fulfill conservation laws

5. H-theorem allowing to distinguish between superfluid and dissipative be-
haviors

6. #= ensemble theory in equilibrium

7. number-conserving #= spontaneous U(1) breaking



Conditions for superfluidity:

1. Collision blockade = Reservoir of potential energy, Macroscopic coherent
condensate

2. Stable gas — Landau criterion

Normal fluid can be considered as a whole



Are there only the Bogoliubov collective excitations?

Assume an atom with low momentum p traveling through
the condensate at T'= 0 given u, V(r) = mw?r?/2, c(r) = v/4mwan(r)/m

/N

What is the time of flight?

r deB
At =t;—t; = / ' dr _, 1) Standard theory — v(r) = d—;(fr) ~ c(r)
r v(r) 2) GRPA theory — v(r) = p/m



Defining s = p?/(4mpu), we get

Atgrpa — Atg = F(s)/w ~ 10ms
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