

EPR CORRELATIONS VIA BEC DISSOCIATION

M. K. Olsen, K. V. Kheruntsyan and P. D. Drummond

ARC Centre for Quantum-Atom Optics, University of Queensland, Qld 4072, Australia

Introduction

- Continuous variable demonstration of quantum mechanical paradoxes with massive particles.
- Will correlations be the same for massive atoms and massless photons?

• We use field quadratures: directly analogous to position and momentum of original paradox.

EPR with Quadratures

Two quadrature correlated (entangled) outputs with different momenta
We can choose noncommuting properties to measure

• Field quadratures:

Mode matching

- Naive calculation as in single-mode case shows no EPR correlations
 Different momentum modes are mixed
 Solution: mode-matched local oscillators
- Four mode-matched quadrature operators:

 $\hat{X}_{\pm}(\tau) = \int d\xi \left[\phi_{\pm}^*(\xi) \hat{\Psi}_1(\xi, \tau) + h.c \right],$

• We extend quantum optical experiments into the atom-molecular domain: will interactions and increased noise destroy correlations?.

BEC Dissociation

 Molecular BEC via Feshbach resonance or photoassociation of atomic BEC.

Dissociation (with appropriate detunings) gives correlated atomic outputs
Previously shown to be strongly correlated in intensities

[K. V. Kheruntsyan and P. D. Drummond, PRA **66**, 031602 (2002)]

Atomic density distribution

$$\left[\hat{a}_{q}, \hat{a}_{q'}^{\dagger} \right] = \delta(q - q') \longrightarrow V(\hat{X})V(\hat{Y}) \ge 1.$$

$$V^{inf}(\hat{X}_{\pm q}) = V(\hat{X}_{\pm q}) - \frac{\left[V(\hat{X}_{+q}, \hat{X}_{-q}) \right]^{2}}{V(\hat{X}_{\mp q})}.$$

 EPR signature: apparent violation of Heisenberg uncertainty principle

 $V^{inf}(\hat{X}_{\pm q})V^{inf}(\hat{Y}_{\pm q}) < 1$

[M. D. Reid, PRA 40, 913 (1989)]

Quantum Optics Approach

- Undepleted molecular field in k = 0 mode
- Only two atomic momentum modes

 $\hat{Y}_{\pm}(\tau) = -i \int d\xi \left[\phi_{\pm}^*(\xi) \hat{\Psi}_1(\xi, \tau) - h.c \right].$

• $\phi_{\pm}(\xi) = |\phi_{\pm}(\xi)| \exp(\mp i q_0 \xi)$ are Gaussian local oscillator fields

populated, at $\pm q_0$ • **EXACT** analytical solutions possible, but miss some physics

 $V^{inf}(\hat{X}_{+q_0})V^{inf}(\hat{Y}_{+q_0}) = 1/\cosh^2(2g\tau) \le 1.$

• A TRAPPED CONDENSATE IS NOT A SINGLE MODE

Analysis is simple, but misleading

Inset: dissociation coupling on

Clear demonstration of EPR paradox

Quantum Hamiltonian

$$\begin{split} \hat{H} &= \hat{H}_{kin} \\ &+ \hbar \int dz \left\{ V_2(z) \hat{\Psi}_2^{\dagger} \hat{\Psi}_2 + \frac{1}{2} \sum_{i \ge j} U_{ij} \hat{\Psi}_i^{\dagger} \hat{\Psi}_j^{\dagger} \hat{\Psi}_j \hat{\Psi}_i \\ &- i \frac{\chi(t)}{2} \left[\hat{\Psi}_2^{\dagger} \hat{\Psi}_1^2 - \hat{\Psi}_1^{\dagger 2} \hat{\Psi}_2 \right] \right\}. \end{split}$$

One Dimensional Analysis

Positive-P representation equations

 $\frac{\partial \psi_1}{\partial \tau} = i \frac{\partial^2 \psi_1}{\partial \xi^2} - (\gamma_1 + i\delta) \psi_1$ $+\kappa\psi_2\psi_1^++\sqrt{\kappa\psi_2}\ \eta_1,$ $\partial \psi_2 = i \, \partial^2 \psi_2$

Summary

 Homodyne measurements of BEC could open new lines of investigation

Ĥ_{kin} is kinetic energy *Ψ̂_{1,2}(z,t)* – field operators for bosonic atoms (1) and bosonic dimers (2) *V*₂(z) is harmonic trap for molecules *U_{ij}* – *s*-wave scatterings *χ* – atom-molecule coupling (2*A ≓ M*)
Atoms not trapped
Similarities with well-known optical parametric amplifier Hamiltonian

• DIFFERENCES ARE IMPORTANT

 $\frac{\partial \psi_2}{\partial \tau} = \frac{i \partial^2 \psi_2}{2 \partial \xi^2} - i v \psi_2$ $- \frac{\kappa}{2} \psi_1^2 + \sqrt{-i u} \psi_2 \eta_2.$

• Plus equations for ψ_1^+ , ψ_2^+

- Four independent variables: can model QM with c-number fields
- Use stochastic integration; take trajectory averages
- Stochastic averages give normallyordered operator moments
- Macroscopic test of quantum mechanics with massive particles

 Important to use realistic condensates

K. V. Kheruntsyan, M. K. Olsen and P.D. Drummond, cond-mat/0407363