Peierls instability for confined ultracold boson-fermion lattice gases
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Abstract Peterls Instability

For m, =0 , the adiabatic Holstein model 1s known to exhibit a Peierls instability [2], with
We study an ultracold Bose-Fermi mixture in a one dimensional optical lattice. When boson respect to bosonic collective excitations with wave number equal to N /M, corresponding to
atoms are heavier then fermion atoms the system 1s described by an adiabatic Holstein model, twice the Ferm1 wave length k; =N /2M. It 1s favorable for the system to reduce the 1D
exhibiting a Peierls instability for commensurate fermion filling factors. A Bosonic density wave translation symmetry by enlarging the effective unit cell, thereby opening a gap in the fermionic
with a wave-number of twice the Fermi wave-number will appear in the quasi one-dimensional spectrum When the wavelength of the excitation 1s 2k this gap coincides with the discontinuity
system. We demonstrate the formation of a density wave numerically and via a continuum of the Fermi distribution, so that all fermions are on the side of the spectrum which 1n energy.
analytical model. For example, for N/M = 1/2 the unit cell doubles, opening a gap in the fermionic spectrum at the

zone boundary of the folded Brillouin zone. It should be noted that in difference to the standard
Su-Schrieffer-Heeger (SSH) model |3 ] used for quasi one-dimensional systems exhibiting a

| | | The Mﬂdel o | Peierls instability, the coupling to the bosonic degrees of freedom in our system 1s on-site
We consider a mixture of N, spin polarized fermionic atoms and N, bosonic whereas in the SSH model it effects the hopping probability. In order to demonstrate the Peierls

atoms contined to a quast e dimgnsimnal (Q1D) optical lattice with M.sites_ (see instability we show bellow how the energy of the system is affected by spatial bosonic
Fig. bellow). For a strong optical field, one can expand boson- and fermion field wadilatiar et the B 2k L

operators 1n terms of the one-mode-per-site Wannier basis set [ 1], thus obtaining M
the lowest Bloch-band Hubbard model
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Numerics Demonstrating Peierls Instability
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j : 62 A r%rfl ) 7o ) diagonalization of the fermionic Hamiltonian. We follow a similar method to the
- one used by Anderson to calculate the excitation spectrum of a superconductor
Static bosonic field is treated with the Thomas-Fermi approximation i with _lmcal dlsmrder [5]. In this techmque_:, ‘-.ﬁTthh 1S esser.ltmlly equivalent to a local
With respect to the trap & denmty approximation (L.DA).:, the fermionic spectrum 1s calculated by spatial
| 5 averaging over spectra with different local order parameters.
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Is the oscillator energy EH = (H bt 1/ 2)({)
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Resulting in the following gap equation:  with the strong coupling limit solution:

FIG.: (a) repulsive fermion-boson interactions |5] P. W. Anderson, J. Phys. Chem. Solids 11, 26 TR A ¥ " 9 + A2 - &” — 2’UFA €xXp (_I/A) .
(b) attractive fermion-boson interactions (1959). —¥F ; 1 Fq ’
The shaded part depicts the bosonic mean field density whereas Where ﬂ, g / (2 7zg sl 1S a

dimensionless c:muplmg constant and A
1s a high momentum cut-off

filled circles denote fermionic atoms.
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