Taming the dragon Chromium

Tilman Pfau

University of Stuttgart

Deutsche Forschungsgemeinschaft

12.10.04 @ MPIPKS

Why bother?

Dipolar coupling in fluids

Ferrofluids

Application: rotary seals in disk drives dampers for audio speakers

Dipolar coupling in gases?

$$k_{\rm B}T_{\rm c} \approx V_{\rm DD} \sim \frac{1}{r^3} \sim n$$

 solid
 $n \sim 10^{23}/cm^3$ $T_c \sim 1K$ ($T^{ex}_c \sim 100-1000K$)

 air
 $n \sim 10^{19}/cm^3$ $T_c \sim 0.1 \text{ mK}$

 ultracold gas
 $n \sim 10^{14}/cm^3$ $T_c \sim 1 \text{ nK}$

magnetic dipoles n <<10²¹/cm³

Weak interaction:

$$n << \left(\frac{12\pi\hbar^2}{\mu_0\mu^2 M}\right)^3$$

electric dipoles
 n <<10⁹/cm³

Contact and Long Range Interaction

Contact interaction

$$U_{\rm eff}(r) = \frac{4\pi\hbar^2 a}{m} \delta(r)$$

isotropic

short range

nonlinear matter wave optics strong correlations: Bose Hubbard...

Dipolar interaction $U_{dd}(\vartheta, r) = -\frac{\mu_0 \mu^2 (3\cos^2 \vartheta - 1)}{4\pi r^3}$ anisotropic long range Ζ

stability and ground state of BEC magnetism: Heisenberg, Ising, frustrated lattices...

How strong is the dipolar interaction?

dipole strength (tunable)

compare to contact interaction:

$$\varepsilon_{dd} = \frac{\mu_0 \mu^2 \tilde{M}}{12\pi \hbar^2 a},$$

scattering length (tunable)

atoms

heteronuclear molecules Rydberg atoms

e.g.: CaH, NH₃, CrRb ε_{dd}~100

e.g.: Rb (n=40) ε_{dd}~10⁸

electric dipoles

Rydberg Excitation of Rubidium Atoms

Rydberg excitation of cold atoms

Results: Stark maps

Stability of dipolar condensates

Here: Cr atoms; $\omega_0 = 2\pi$ 150 Hz

K. Góral, K. Rzazewski, T.P.; Phys. Rev. A, **61**, 051601 (R) (2000)

Stabilization?

How to tame Chromium

Magneto-optical Trap

T=70 μK

A. S. Bell, J. Stuhler, S.Locher, S. Hensler, J. Mlynek, T. Pfau, Europhys. Lett. 45, 156 (1999)

Preparation of an ultracold Cr sample:

- Continously loaded loffe Pritchard trap (CLIP-trap)
- J. Stuhler, et al., Phys. Rev. A 64, 031405 (2001)
- P. O. Schmidt, et al., J. Opt. B 5, S170 (2003)
- Compress IP-trap
- Doppler cooling in the IP-trap at high offset field
- P. O. Schmidt, et al., J. Opt. Soc. Am. B 20, 5 (2003)

 $2x10^8$ atoms in the ground state phase space density ρ ~10⁻⁷

Temperature is adjusted by evaporation

Dipole-dipole scattering in magnetic fields

Calculation by Stefano Giovanazzi: Appl. Phys. B 77, 765-772 Hensler et al. (2003)

Measuring the cross sections

Experiment 1:

Stern-Gerlach experiment:

 Very good agreement between theory and experiment

Dipolar relaxation: theory vs exp.

S. Hensler, J. Werner, A. Griesmaier, P.O. Schmidt, A. Görlitz, T. Pfau, S. Giovanazzi, K. Rzazewski Appl. Phys. B. (2003) Loss independent of molecular potentials Born approximation confirmed

Optimization of Rf-Ramp

 $B_0 \approx 150 \,\mathrm{mG}$ $\varrho_{\mathrm{max}} = rac{1}{25}$ $n_0 = 6.5 imes 10^{11} \,\mathrm{cm}^{-3}$ $T = 370 \,\mathrm{nK}$

Taming Part II: Transfer atoms into an optical trap

• Optical Dipole trap: 20W fibre Laser @ λ =1064 nm

Advantage:

- all magnetic substates trapable
- use "dimple trick"

•Problem : Sample still mainly polarized in m_J =+3

Polarize by optical pumping

 Optically pump atoms to magnetic ground state:

300

Evaporation in crossed trap

elastic Collision R GOOD

dipolar Relaxation BAD

Feshbach resonances I

Quantum numbers - notation

Feshbach resonances II

Possible couplings:

Selection rules:

first order	second order
$\Delta S = 0, \pm 2$	$\Delta S = 0, \pm 2, \pm 4$
$\Delta \ell = 0, \pm 2; \Delta m_{\ell} = 0, \pm 1, \pm 2$	$\Delta \ell = 0, \pm 2, \pm 4; \Delta m_{\ell} = 0, \pm 1, \pm 2, \pm 3, \pm 4$

Momentum conservation:

$$\Delta m_{\ell} + \Delta M_{S} = 0$$

e.g.

Cr₂ from:

Z. Pavlovic, B. O. Roos, R. Côté, and H. R. Sadeghpour Phys. Rev. A 69, 030701 (2004)

initial state (open channel)

Our 14 resonances

Comparison exp vs. theory (preliminary)

Theory: A. Simoni E. Tiesinga NIST

 $a_6^{=+105(4)} a_0^{=}$ $a_4^{=} +54(3) a_0^{=}$ $a_2^{=} -21(9) a_0^{=}$ $C_6^{=}798(25) a.u.$ $C_8^{<} 6 \ 10^5 a.u.$

Width vs $1/\Delta M_S$

Status of taming

- dipolar relaxation (pure long range)
- transfer into an ODT
- Optical pumping & evaporation to ρ~0.5
 @250nK & 10⁴ atoms
- 14 Feshbach resonances

Outlook

BEC at last

Tune contact interaction using Feshbach resonances Tune dipole-dipole interaction using NMR-techniques

Play the dipolar game (stability, optical lattices, roton, ...)

 Cr_2 molecules (12 μ_B)

Continuous loading of magnetic wave guide

Trap fermion

Lithography: controlled single atom deposition

The Dragontamers

