Ultracold atoms in one-dimensional optical lattices approaching the Tonks-Girardeau regime

Lode Pollet a*, S. M. A. Rombouts a and P. J. H. Denteneer b

a Vakgroep Subatomaire en Stralingsfysica, Universiteit Gent, Proeftuinstraat 86, 9000 Gent, Belgium
b Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

Abstract

Recent experiments on ultracold atomic alkali gases in an one-dimensional optical lattice have demonstrated the transition from a gas of soft-core bosons to a Tonks-Girardeau gas[3] in the hard-core limit, where one-dimensional bosons behave just like fermions[4]. We have studied the underlying many-body physics through numerical simulations which accommodate both the soft-core and hard-core limits in one single framework[1]. We find that the Tonks-Girardeau gas is reached only at the strongest optical lattice potentials. Results for slightly higher densities, where the gas develops a Mott-like phase[2] already at weaker optical lattice potentials, show that these Mott-like short range correlations do not enhance the convergence to the hard-core limit.

References

Homogeneous system

We calculated the energy density for a homogeneous system (ε=0) consisting of 128 sites at half filling for various values of U/J. For comparison, we also calculated the energy with the Bogoliubov approach valid at low values of U/J and for a system of interacting fermions, which is valid at high values of U/J.

Density

For the homogeneous system, the system develops a gapped Mott phase at integer filling. A trapped system on the contrary, can contain a Mott region[2], i.e. a couple of sites in the center of the trap with integer density where the local compressibility tends to vanish. Can this property be exploited in order to reach the Tonks-Girardeau regime at lower values of the optical potential strength? The answer is no: although the particle densities in coordinate space for soft-core (red curves) and hard-core bosons (green curves) coincide, their momentum profiles do not. \[V_0/E_R = 7.0 \] and \[\beta/J = 1 \].

Trapped system

For the quadratically trapped system (ε= -\(\omega_p^2 / \omega_z^2\)), we calculated the local densities in coordinate space and the experimentally measurable momentum profiles for soft-core (red) and hard-core (green) bosons at various optical potential strengths, (a) \(V_0/E_R = 1.0, \) \(U/J = 1.75 \), (b) \(V_0/E_R = 5.0, U/J = 7.8 \), (c) \(V_0/E_R = 9.5, U/J = 28.6 \), (d) \(V_0/E_R = 12.0, U/J = 52.2 \); and (e) \(V_0/E_R = 20.0, U/J = 288 \). There are \(<N> = 1.5 \) particles and the inverse temperature is estimated to be \(\beta/J = 1 \).

Method

The physics of the one-dimensional atoms is accurately described by the Bose-Hubbard Hamiltonian with nearest-neighbor hopping only,

\[H = -\sum_{i=1}^{U} \sum_{\sigma} (\epsilon_i - \mu) n_{i\sigma} + J \sum_{i=1}^{U} \sum_{\sigma} (n_{i\sigma} - 1)(n_{i+1\sigma} - 1) \]

The tunneling amplitude \(J \), the magnetic trapping \(\epsilon_i \), and the strength of the on-site repulsion \(U \) follow numerically from a lowest band calculation using Wannier orbitals. The Bose-Hubbard Hamiltonian is then simulated by the stochastic series expansion Monte Carlo method (SSE) using directed loops and our locally optimal updating scheme. We can impose a particle cut-off of \(n = 1 \) or \(n = 2,3,... \) per site, corresponding to hard-core and soft-core bosons, respectively. The calculation is based on one single framework for the entire range of optical potential strengths: all input parameters are known or experimentally measurable (no fitting).

Temperature

We also examined how momentum profiles change when lowering the temperature. The relevant momentum scales in a trapped system are different from the momentum scales in the homogeneous case: the harmonic trap sets a lower momentum scale \(p_T = (m \omega_T)^{1/2} \) below which the momentum distribution is flattened due to the suppression of long-range correlations.

For the homogeneous system, the system develops a gapped Mott phase at integer filling. A trapped system on the contrary, can contain a Mott region[2], i.e. a couple of sites in the center of the trap with integer density where the local compressibility tends to vanish. Can this property be exploited in order to reach the Tonks-Girardeau regime at lower values of the optical potential strength? The answer is no: although the particle densities in coordinate space for soft-core (red curves) and hard-core bosons (green curves) coincide, their momentum profiles do not. \[V_0/E_R = 7.0 \] and \[\beta/J = 1 \].