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3 Institut für Theoretische Physik III, Universität Stuttgart, D-70569 Stuttgart, Germany

Abstract

We analyze the physics of Bose-Einstein condensates confined in quasi-periodic optical lattices (optical quasicrystals), which offer an intermediate situation between ordered and disordered systems. We
discuss in particular the time-of-flight interference picture associated with the extended nature of the wavefunction, as well as the localization effects during the expansion of a Bose-Einstein condensate in
an optical quasicrystal. We analyze in detail the crossover between diffusive and localized regimes when the quasi-periodic potential is switched on. We investigate additionally the role of the interatomic
interactions in the condensate diffusion.

Long-range order in quasicrystal optical lattices

• Quasicrystals in condensed matter

Periodic [left; from M.

C. Escher, Regular Divi-

sion of the Plane With

Birds, woodcut, (1949)]

and quasiperiodic [right;

Fivefold symmetric Penrose

tiling] tilings of the plan.

Quasicrystals form a new class of solids [D. Shechtman et al, Phys. Rev. Lett. 53, 1951 (1984); D.
Levine and P. J. Steinhardt, ibid. 53, 2477 (1984)] intermediate between ordered and disordered
systems. They have:

− long-range order (repetitiveness; diffraction peaks)

− no translational invariance (lack of periodicity of position and/or type of the crystal ions)

• Optical periodic and quasiperiodic lattices

Laser beam configuration (left)

and lattice potential (right) for a

periodic (top) and a quasiperiodic

(bottom) optical lattice. In the

quasiperiodic case, five laser beams

are arranged in the (Oxy) plane

with a fivefold rotation symmetry.

The periodic configuration corre-

sponds to the same configuration

except that lasers 1 and 4 have zero

intensity.

The quasiperiodic lattice is long-range ordered but without translational invariance (quasiperiodic-
ity).

• Bose-Einstein condensate in an optical lattice

Consider a Bose-Einstein condensate at zero temperature in a twofold trapping potential composed
of

− a harmonic potential Vho(
−→r ) = M
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− an optical lattice with periodic or quasiperiodic order (see configurations above)
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The harmonic confinement along the axis orthogonal to the lattice plane (z) is assumed to be strong
so that transverse degrees of freedom do not support any excitation: the dynamics is 2D.

• Quasiperiodic long-range ordered BEC

The static Gross-Pitaevskii equation µψ =
[

−~
2−→∇2/2M + Vho(

−→r ) + Vlatt(
−→r ⊥) + g2D|ψ|

2
]

ψ

provides us with the static BEC wavefunction. From this, we compute the momentum distribution
(which can be experimentally mapped into time-of-flight measurements).
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Momentum distributions of BEC’s in a) periodic and b) quasiperiodic optical lattices. Also shown in c) is a comparison

of resolutions in periodic and quasiperiodic cases.

Our results clearly show that in both cases, the BEC exhibits (periodic or quasiperiodic) long-range
order. In the quasiperiodic case, the BEC wavefunction shows a five-fold symmetry similar to
the Penrose tiling which is incompatible with any translation invariance. Similar resolutions are
obtained for periodic and quasiperiodic lattices.

Coherent expansion of a BEC in periodic and quasiperiodic optical lattices

• Quantum dynamics in optical lattices

We study the coherent expansion of the BEC in a (quasi)periodic optical lattice. The sequence is:

− preparation in harmonic trap and (periodic or quasiperiodic) optical lattice (see above);

− the harmonic trap and eventually the 2-body interaction is/are suddenly switched off at t = 0;

− we observe the quantum diffusion of the BEC wavefunction in the (quasi)periodic lattice; this is
computed by means of the time-dependent Gross-Pitaevskii equation:

i~∂tψ =
[

−~
2−→∇2/2M + Vlatt(

−→r ⊥) + g2D|ψ|
2
]

ψ . (2)

• Diffusion versus Anderson localization
In the absence of interactions, the diffusion corresponds to

− periodic: anisotropic ballistic expansion
〈µ2(t)〉 = aµ0 + aµ1t + aµ2t

2 with aµ2 ∝ 1/M∗2 where
M∗/M ∼ ER/J is the effective mass

− quasiperiodic: Anderson localization due to quasidisorder  1e−07
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This shows dramatically different transport properties due to the nature of the quantum eigenstates
in the periodic (extended wavefunctions) and quasiperiodic (non-extended wavefunctions) lattices.
These behavior of the coherent BEC is drastically different to the one obtained with non-degenerate
cold atoms where similar diffusions were found for both cases [L. Guidoni et al, Phys. Rev. Lett.
79, 3363 (1997); Phys. Rev. A 60, R4233 (1999)].

• Disorder-induced phase transition to localization

By controlling the intensity of lasers 1 and 4, one can turn continuously from a periodic to a
quasiperiodic lattice and one can correspondingly investigate the transition from a diffusive phase
to a localized phase.
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Transition from a diffusive to a localized phase in absence

or presence of interactions. Here, ∆ is the pseudo-disorder

parameter (variance of the on-site energy due to weak in-

tensity of lasers 1 and 4).

The phase transition from a diffusive phase to a
localized phase in the x direction occurs when
the pseudo-disorder is of the order of magnitude
of the tunneling Jx.

• Effects of interactions

We finally study the effects of interactions on the coherent diffusion.

− periodic: During the initial preparation of the BEC, the wavefunction results from a competition
between interactions and on-site energy (due to harmonic potential). After switching off the
harmonic potential, the on-site interaction energy Ej = cst−Vj can depend significantly on the
site and consequently make the tunneling non-resonant. More precisely,

∗) if J � |Vj − Vl| where j and l are ajacent sites, the ballistic expansion is enhanced due to
conversion of interaction energy into kinetic energy

∗) if J � |Vj − Vl| the tunneling is non-resonant and this leads to localization.

− quasiperiodic: Due to pseudo-disorder, the interaction energy during expansion (if ∆ < J) is
converted into kinetic and on-site potential energy. This results in enhancement or reduction of
the expansion.


