BEC 1n a quasiperiodic optical lattice: a quantum
oas at the edge between order and disorder
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Abstract |

We analyze the physics of Bose-Einstein condensates confined in quasi-periodic optical lattices (optical quasicrystals), which offer an intermediate situation between ordered and disordered systems. We
discuss in particular the time-of-flight interference picture associated with the extended nature of the wavetunction, as well as the localization effects during the expansion of a Bose-Einstein condensate in
an optical quasicrystal. We analyze in detail the crossover between diffusive and localized regimes when the quasi-periodic potential is switched on. We investigate additionally the role of the interatomic
interactions in the condensate diffusion.

‘ Long-range order in quasicrystal optical lattices \

e (Quasicrystals in condensed matter

. , e Bose-Einstein condensate in an optical lattice
Periodic  [left; from M. . . . _ . .
C. Fscher, Regular Divi- Consider a Bose-Einstein condensate at zero temperature in a twofold trapping potential composed
sion of the Plane With of
Birds, woodcut, (1949)] — a harmonic potential Vi (77) = ]\24 (wi T +w2 2)
and quasiperiodic  [right; — an optical lattice with periodic or quasiperiodic order (see configurations above)
Fivefold symmetric Penrose
tiling] tilings of the plan. g
. . Viatt (77 1) = £.|2 Z gjeje AT - (1)
Quasicrystals form a new class of solids |D. Shechtman et al, Phys. Rev. Lett. 53, 1951 (1984); D. pr 0<i<N,
Levine and P. J. Steinhardt, ibid. 53, 2477 (1984)] intermediate between ordered and disordered
systems. They have: The harmonic confinement along the axis orthogonal to the lattice plane (z) is assumed to be strong
— long-range order (repetitiveness; diffraction peals) so that transverse degrees of freedom do not support any excitation: the dynamics is 2D,
— no translational invariance (lack of periodicity of position and/or type of the crystal ions) e Quasiperiodic long-range ordered BEC
° ° ° ° ° ° ° H
 Optical periodic and qua&per;od;c Ilattl(.:_es. B The static Gross-Pitaevskii equation py = {—ﬁZVQ [2M + Vi (7)) + Vit (77 ) + QQDWH Y
“ o’ N Laser b.eam Confjlgura.tlon (left) provides us with the static BEC wavefunction. From this, we compute the momentum distribution
o Bl T and lattice potential (right) for a (which can be experimentally mapped into time-of-flight measurements).
/\ ol b periodic (top) and a quasiperiodic
5 l (bottom) optical lattice. In the LT T T U . o0 cubic latice ®
0 0 x i .o 0.4 - quasiperiodic ~ © d o
B i iiiiiiiiiiiiiiil quasiperiodic case, five laser beams , | - | . | - | oeriodic 9 .
- AR are arranged in the (Oxy) plane S : : § NI o I . R s
§5a 65 e T o | . v - o R T S i i
- EERRRNRRERENRERRE with a fivefold rotation symmetry. < - o S el 2 02 ° ., 0 ¢ e
S x The periodic configuration corre- o ' _ M o _ oy S M ’
y! - v IS RO N sponds to the same configuration oo T N ope % | | |
- PRYN ; : 4 2 0 2 4 4 2 0 2 4 0 5 10 15 20
2 %‘&y =y PngY: Py Ve e except that lasers 1 and 4 have zero P/ Bk P/ ik ylEs
. /\ B T L SO K e intensity.
o - e P s o S T Momentum distributions of BEC’s in a) periodic and b) quasiperiodic optical lattices. Also shown in ¢) is a comparison
0 x y : : of resolutions in periodic and quasiperiodic cases.
/ M-y v gy v e Our results clearly show that in both cases, the BEC exhibits (periodic or quasiperiodic) long-range
- M= - order. In the quasiperiodic case, the BEC wavetunction shows a five-fold symmetry similar to
the Penrose tiling which is incompatible with any translation invariance. Similar resolutions are
The quasiperiodic lattice is long-range ordered but without translational invariance (quasiperiodic- obtained for periodic and quasiperiodic lattices.
ity).
Coherent expansion of a BEC in periodic and quasiperiodic optical lattices
e Disorder-induced phase transition to localization
¢ Quantum dynamics in optical lattices By controlling the intensity of lasers 1 and 4, one can turn continuously from a periodic to a
We study the coherent expansion of the BEC in a (quasi)periodic optical lattice. The sequence is: quasiperiodic lattice and one can correspondingly investigate the transition from a diffusive phase
— preparation i ' i0d; ineriodi i i : to a localized phase.
preparation in harmonic trap and (periodic or quasiperiodic) optical lattice (see above); p Transition from a diffusive to a localized phase i absence
— the harmonic trap and eventually the 2-body interaction is/are suddenly switched off at ¢ = 0; 0.005 ——— or presence of interactions. Here, A is the pseudo-disorder
— we observe the quantum diffusion of the BEC wavefunction in the (quasi)periodic lattice; this is 0004 | i neractons - parameter (variance of the on-site energy due to weak in-
computed by means of the time-dependent Gross-Pitaevskii equation: S S tensity of lasers 1 and 4).
©ooc2f e The phase transition from a diffusive phase to a
— e . . L
ihOp) = [—hQVZ /2M + Vlatt<?> 1)+ gQDW\Q Y . (2) 0.001 | e, localized phase in the x direction occurs when
N L PPTIE SO the pseudo-disorder is of the order of magnitude
0 02 04 06 08 1 12 14 16 18 . .
A1, of the tunneling J,.
e Diffusion versus Anderson localization _
In the absence of interactions, the diffusion corresponds to 10000 | xperodc -+ : :
SO e Effects of interactions

— periodic: anisotropic ballistic expansion

We finally study the effects of interactions on the coherent diffusion.
(12 (1)) = a0 + agt + au2t2 with a9 o 1/M*? where
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% : : S | S — periodic:  During the initial preparation of the BEC, the wavetunction results from a competition
M* /M ~ ER/J is the effective mass = A ol SR . . . . . o
e P oo b between interactions and on-site energy (due to harmonic potential). After switching off the
— quasiperiodic: - Anderson localization due to quasidisorder o0 €57 e w w harmonic potential, the on-site interaction energy F; = cst — V}; can depend significantly on the
o o site and consequently make the tunneling non-resonant. More precisely,

*)if J > |V; — V)| where j and [ are ajacent sites, the ballistic expansion is enhanced due to

This shows dramatically different transport properties due to the nature of the quantum eigenstates . . . . .
conversion of interaction energy into kinetic energy

in the periodic (extended wavefunctions) and quasiperiodic (non-extended wavefunctions) lattices.
These behavior of the coherent BEC is drastically different to the one obtained with non-degenerate

cold atoms where similar diffusions were found for both cases [L.. Guidoni et al, Phys. Rev. Lett. — quasiperiodic:  Due to pseudo-disorder, the interaction energy during expansion (if A < J) is
79, 3363 (1997); Phys. Rev. A 60, R4233 (1999)]. converted into kinetic and on-site potential energy. This results in enhancement or reduction of

the expansion.

x) if J <[V — V| the tunneling is non-resonant and this leads to localization.




