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(Abstract

The rapid progress of atom chip technology opens the per-
spective for experiments that probe the transport of Bose-
Einstein condensates through mesoscopic waveguides. Par-
ticularly interesting in this context is the propagation of the
condensate through a double barrier potential created by a se-
quence of two constrictions in the waveguide, which can serve
as a Fabry-Perot interferometer for the condensate. We show
that the presence of a finite repulsive interaction between the
atoms generally leads to a suppression of resonant transport in
such propagation processes. Near-resonant scattering states
can nevertheless be populated on a finite time scale by means
of a time-dependent control of the external potential [1].

Resonator for Condensates

We consider the propagation of a Bose-Einstein condensate
through a quasi one-dimensional waveguide with a longitudi-
nal double-barrier potential V(z) acting as a resonator [2,3].
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Noninteracting atoms: resonant scattering states lead to

Breit-Wigner peaks in the transmission spectrum.
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Basic question:
— Under which conditions can resonant transport be realized
for an interacting condensate ?

Existence of resonant states

o Start from effective 1D Gross-Pitaevskii equation
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with g = 2a,hw, in quasi-1D waveguides [4].
e Ansatz ¢(z,t) = A(x) exp [i(P(z) — pt)]
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with ji = Aza— independent of z [5].
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o Integrate the time-independent equation for A(z) from
& — +00 to 2 — —oo with the “initial” conditions:
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e Calculate the drag Fy that the condensate exerts onto the
obstacle [6]:
dV(z)
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— Fy measures proximity of ¢ to a resonant state:
large F; — scattering state far away from resonances
small F; — scattering state close to a resonant state
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Relevant experimental parameters

the bosons: ¥ Rb atoms

transverse trap frequency: w, = 2710%s~!

scillator length: a; = \/h/mw, = 0.34um
= effective interaction strength: g ~ 0.034hw a;
resonator length:L = 5um = 14.7a .

barrier width: o = 0.5um = 1.47a

potential height: Vi = hw,

incident current: j; = 10" atoms/s

harmonic

Stationary solutions near 6th resonance

o Calculate the drag Fj; as a function of 1 and j; at fixed g

dark blue areas: high drag
light blue areas: low drag .

white areas: no stationary solution
(integration of A diverges at finite ) o
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— chemical potential g of the resonant state increases with j
in presence of repulsive atom-atom interaction.

— For large currents, scattering states exist only in the imme-
diate vicinity of the resonances.

Resonant Transport

— Can the resonant scattering states be populated in a
realistic propagation process?
Numerical simulation

o Expand condensate wavefunction on a finite grid with

absorbing boundary conditions [7] at the grid boundaries.
o Integrate time-dependent Gross-Pitaevskii equation

in presence of a source term:
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o Adiabatic increase of Sy — smooth convergence to
stationary scattering state with chemical potential p

® Determine the transmission from the incident current
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T j+ downstream current in presence of the barrier
Ji downstream current in absence of the barrier

Transmission spectrum

.t fixed incident current j; = 10* atoms /s
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e asymmetric profiles for g > 0

e step-like structures in the spectrum
— bistability phenomenon near the resonance [3]
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= resonant transport is suppressed for finite interactions

Adiabatic control of resonant transport

— temporal variation of the external potential during the prop-
agation process (e.g. by red-detuned laser beam):

V(z) — V(z) = V(t)
AV =V(ty) = V() =Ap
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— enhance transmission near resonance on a finite time scale
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— Decay of resonant scattering state within 7 ~ 10 ms.

The bottom line

® Resonance peaks are distorted in presence of interactions.

o Straightforward propagation processes do not probe reso-
nant scattering states of the condensate.

® Temporal variations of the potential can be applied to ob-
tain resonant transport on finite time scales.
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