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Abstract
The rapid progress of atom chip technology opens the per-
spective for experiments that probe the transport of Bose-
Einstein condensates through mesoscopic waveguides. Par-
ticularly interesting in this context is the propagation of the
condensate through a double barrier potential created by a se-
quence of two constrictions in the waveguide, which can serve
as a Fabry-Perot interferometer for the condensate. We show
that the presence of a finite repulsive interaction between the
atoms generally leads to a suppression of resonant transport in
such propagation processes. Near-resonant scattering states
can nevertheless be populated on a finite time scale by means
of a time-dependent control of the external potential [1].

Resonator for Condensates
We consider the propagation of a Bose-Einstein condensate
through a quasi one-dimensional waveguide with a longitudi-
nal double-barrier potential V (x) acting as a resonator [2,3].

V (x) = V0
(

e−(x+L/2)2/σ2

+ e−(x−L/2)2/σ2
)
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Noninteracting atoms: resonant scattering states lead to
Breit-Wigner peaks in the transmission spectrum.
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Basic question:

−→Under which conditions can resonant transport be realized
for an interacting condensate ?

Existence of resonant states

• Start from effective 1D Gross-Pitaevskii equation

i~
∂

∂t
ψ(x, t) =

(

−
~2

2m

d2

dx2
+ V (x) + g|ψ(x, t)|2

)

ψ(x, t)

with g = 2as~ω⊥ in quasi-1D waveguides [4].

•Ansatz ψ(x, t) = A(x) exp [i(Φ(x)− µt)]

⇒ µA = −
1

2

d2A

dx2
+

(

V (x) +
j2t
2A4

)

A + UA2

with jt = A2∂Φ

∂x
independent of x [5].

• Integrate the time-independent equation for A(x) from
x→ +∞ to x→ −∞ with the “initial” conditions:

A′(∞) = 0 and µ =
mj2t

2A2(∞)
+ gA2(∞)

•Calculate the drag Fd that the condensate exerts onto the
obstacle [6]:

Fd =
∫ +∞

−∞
dx n(x)

dV (x)

dx

→Fd measures proximity of ψ to a resonant state:

large Fd −→ scattering state far away from resonances

small Fd −→ scattering state close to a resonant state

Relevant experimental parameters

the bosons: 87Rb atoms
transverse trap frequency: ω⊥ = 2π103s−1

harmonic oscillator length: a⊥ =
√

~/mω⊥ = 0.34µm
=⇒ effective interaction strength: g ' 0.034~ω⊥a⊥
resonator length:L = 5µm = 14.7a⊥
barrier width: σ = 0.5µm = 1.47a⊥
potential height: V0 = ~ω⊥

incident current: ji = 104 atoms/s

Stationary solutions near 6th resonance

•Calculate the drag Fd as a function of µ and jt at fixed g

dark blue areas: high drag

light blue areas: low drag

white areas: no stationary solution
(integration of A diverges at finite x) −10 0 10

0

1

−10 0 10
0

4

8

PSfrag replacements

x/a⊥

g = 0 g = 0.034~a⊥ω⊥

0.8 0.9 1 1.1 1.2
0

1

0.9 1 1.1 1.2 1.3
PSfrag replacements

µ/(~ω⊥)µ/(~ω⊥)

j t
/ω

⊥

→ chemical potential µ of the resonant state increases with jt
in presence of repulsive atom-atom interaction.

→For large currents, scattering states exist only in the imme-
diate vicinity of the resonances.

Resonant Transport

−→Can the resonant scattering states be populated in a
realistic propagation process?

Numerical simulation

•Expand condensate wavefunction on a finite grid with
absorbing boundary conditions [7] at the grid boundaries.

• Integrate time-dependent Gross-Pitaevskii equation
in presence of a source term:

i~
∂

∂t
ψ(x, t) =

(

−
~2

2m

d2

dx2
+ V (x) + g|ψ(x, t)|2

)

ψ(x, t)

+S0δ(x− x0) exp(−iµt/~)

•Adiabatic increase of S0 −→ smooth convergence to
stationary scattering state with chemical potential µ
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•Determine the transmission from the incident current

ji =
~|S0|

2

mk0
with ~k0 =

√

2m (µ− g|S0|2/k20)

and the total current jt =
~

m
Im

[

ψ∗ ∂

∂x
ψ

]

:

T =
jt
ji
=

downstream current in presence of the barrier

downstream current in absence of the barrier

Transmission spectrum

...at fixed incident current ji = 104 atoms /s
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• asymmetric profiles for g > 0

• step-like structures in the spectrum
→ bistability phenomenon near the resonance [3]
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⇒ resonant transport is suppressed for finite interactions

Adiabatic control of resonant transport

→ temporal variation of the external potential during the prop-
agation process (e.g. by red-detuned laser beam):

V (x)→ V (x)− V (t)

∆V ≡ V (tf)− V (ti) = ∆µ
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→ populate upper branch of the resonance peak
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→ enhance transmission near resonance on a finite time scale
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→Decay of resonant scattering state within τ ∼ 10 ms.

The bottom line

•Resonance peaks are distorted in presence of interactions.

• Straightforward propagation processes do not probe reso-
nant scattering states of the condensate.

•Temporal variations of the potential can be applied to ob-
tain resonant transport on finite time scales.
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