

# Beyond Gutzwiller: Corrections to mean-field expansion patterns of interacting bosonic atoms in optical lattices

CHRISTIAN SCHROLL<sup>1</sup>, FLORIAN MARQUARDT<sup>2</sup>, CHRISTOPH BRUDER<sup>1</sup>

<sup>1</sup>Department of Physics and Astronomy, University of Basel, Klingelbergstr. 82, 4056 Basel, Switzerland <sup>2</sup> Yale University, Department of Physics PO Box 208284, New Haven, CT 06511, USA

We consider the Mott-insulator transition in optical lattices, studying in particular short-range correlations that determine the momentum distribution and the experimentally observed expansion patterns. There are many different numerical approaches based on the Gutzwiller ansatz, DMRG<sup>1</sup>, Exact Diagonalization<sup>2</sup> or QMC techniques<sup>3,4</sup>.

We are using a Gutzwiller ansatz and study in particular the corrections arising from the inclusion of short-range interlattice correlations. As the Gutzwiller approach does not correctly describe the spatial decay of the one-particle density matrix, we improve the Gutzwiller approach in a perturbative way by including nearest-neighbor and next-nearest neighbor correlations. We present results for 2D- and 3D optical lattices and study the modifications of the density fluctuations and the density matrix.



## **Underlying HO-Potential** • Experiments: additional trapping potential in order to confine the condensate to a finite region of the optical lattice. • the inhomogeneity caused by the trapping potential leads to slowly varying on-site energies $\epsilon_i$ , $\epsilon_i = \alpha (i - i_c)^2$ which can be interpreted as a spatially varying chemical potential $\mu - \epsilon_i$ :

### **Expansions Patterns for a 3D-lattice:**

#### **Optical Lattices**



- retro-reflected lasers in  $\hat{x}$ ,  $\hat{y}$ , and  $\hat{z}$  directions form a 3D lattice of intensity maxima and minima
- condensed atoms are loaded into the off-resonant laser field
- the 3D-standing wave forms an periodic lattice potential for the condensate with the ratio of the hopping element J to on-site repulsion U as a tunable parameter.

## Mott-Hubbard model





## Numerical Results

- computing the Gutzwiller wavefunction  $|G_0\rangle$
- computing the MF-excitation spectrum for all lattice sites
- computing the corrections using perturbation theory up to second order in V

## Single Lattice Site Observables



ED

PT

GW

(c)

0.25

J/U = 0.2

#### **Expansion Patterns**

Assuming a sufficiently dilute atomic cloud and long expansion times, the shape of the expanded cloud reflects the initial momentum distribution:

$$\rho(\mathbf{k}) = |w(\mathbf{k})|^2 \sum_{i,j=1}^{M} \rho_{ij} e^{i\mathbf{k}(\mathbf{r}_i - \mathbf{r}_j)}$$

#### Homogeneous 2D-lattice, $\epsilon = 0$ :



## **<u>3D-lattice:</u>** 15<sup>3</sup>-sites

Lattice site occupation number along a cut through the trap center:





|                                                  | - Fig. (d)-(f): Expansion patterns improved by pertur-<br>bation theory (PT) up to $2^{nd}$ order.<br>( <b>Inset:</b> linecut along $k_x$ for $k_y = 0$ .)                                                        |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $3^{2}$ i                                        | Fig. $\mu/U$ $J/U$ normalized to:         a,d       0.75       0.01       peak max.         b,e       0.45       0.04       peak max.         c,f       1.5       0.0225 $1/20 \times$ peak max                   |
| $(U)_c^{MF} = 0.086 \text{ and}$<br>RG, ED, QMC. | <ul> <li>Consequences of PT:</li> <li>Broad peaks arise due to the inclusion of short range correlations.</li> <li>Considerable reduction of the SF-peak due to the correction of the mean field in PT</li> </ul> |
| ED PT GW 3                                       |                                                                                                                                                                                                                   |

- only a good approximation in higher dimensions.
- modifications in the expansion pattern:
  - homogeneous lattice  $\implies$  broad peaks are arising
  - HO-trap  $\implies$  modification of the peak structure e.g. peak broadening.

[1] C. Kollath, U. Schollwöck, J. von Delft, and W. Zwerger, condmat/0310388.

[2] R. Roth and K. Burnett, Phys. Rev. A 68, 023604 (2003).

[3] G. G. Batrouni et al., Phys. Rev. Lett. **89**, 117203 (2002)

[4] V. A. Kashurnikov, N. V. Prokof'ev B. V. Svistunov, Phys. Rev. A **66** R031601 (2002)