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We consider the Mott-insulator transition in optical lattices,

studying in particular short-range correlations that determine

the momentum distribution and the experimentally observed

expansion patterns. There are many different numerical ap-

proaches based on the Gutzwiller ansatz, DMRG1, Exact

Diagonalization2 or QMC techniques3,4.

We are using a Gutzwiller ansatz and study in particular the

corrections arising from the inclusion of short-range inter-

lattice correlations. As the Gutzwiller approach does not

correctly describe the spatial decay of the one-particle density

matrix, we improve the Gutzwiller approach in a perturbative

way by including nearest-neighbor and next-nearest neighbor

correlations. We present results for 2D- and 3D optical lat-

tices and study the modifications of the density fluctuations

and the density matrix.

Optical Lattices

• retro-reflected lasers in x̂, ŷ, and ẑ directions
form a 3D lattice of intensity maxima and min-
ima

• condensed atoms are loaded into the off-resonant
laser field

• the 3D-standing wave forms an periodic lattice
potential for the condensate with the ratio of the
hopping element J to on-site repulsion U as a
tunable parameter.

Mott-Hubbard model

Mott-Hubbard Hamiltonian:
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Gutzwiller ansatz:

|G0〉 =
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Mean Field Approximation:

HMF =
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where the mean field is obtained from the
Gutzwiller result: Ψi = 〈G0|ai|G0〉

Perturbative Approach

Rewriting the Hamiltonian:

H = HMF + (H − HMF)

= HMF +
∑

〈i,j〉

Ψ∗
i Ψj−J

∑
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†
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︸ ︷︷ ︸

V

Using the mean field solution obtained from the
Gutzwiller ansatz, |G0〉, as a starting point we do
perturbation theory in V :

|Gl〉 =
V |Gl−1〉 −

∑l−1

n=1
εnGl−n〉

ε0 − εα

=⇒ Inclusion of short-range inter-lattice correla-
tions!

Corrections to ρij = 〈a
†
iaj〉

1st order corrections:
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Numerical Results

• computing the Gutzwiller wavefunction |G0〉

• computing the MF-excitation spectrum for all
lattice sites

• computing the corrections using perturbation
theory up to second order in V

Single Lattice Site Observables
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Results for GW (dashed-dotted line), and PT for a d =

1D,2D, and 3D lattice. (fix N = 7d in (a) and ED (dashed

line), µ/U = 0.5 in (b),(c)).

(a) number fluctuations: σNi
=

√

〈n2
i 〉 − 〈ni〉2

(b) order parameter: Φi = 〈ai〉

(c) compressibility: κ = M
N 2

∑M
i=1

∂〈ni〉
∂µ

The Correlation Function

Comparing with exact diagonalization
results:

correlation function: ρkl = 〈a
†
kal〉

Mott Insulator: 7 sites, N = 7, J/U = 0.05
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Intermediate: 7 sites, N = 7

Parameter (J/U) between (J/U)MF
c = 0.086 and

(J/U)c ≈ 0.2 · · · 0.3 from DMRG, ED, QMC.
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Expansion Patterns

Assuming a sufficiently dilute atomic cloud and
long expansion times, the shape of the expanded
cloud reflects the initial momentum distribution:

ρ(k) = |w(k)|2
M∑

i,j=1

ρije
ik(ri−rj)

Homogeneous 2D-lattice, ε = 0:
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• The central figure (color) shows the correction to ρi,i+1 in
second order PT.

• Fig. (a)-(f): Expansion patterns for a 2D-lattice showing
ρ(k)/|w(k)|2 .

– Fig. (a)-(c): Expansion patterns obtained from the
Gutzwiller (GW) ansatz

– Fig. (d)-(f): Expansion patterns improved by pertur-
bation theory (PT) up to 2nd order.
(Inset: linecut along kx for ky = 0.)

Fig. µ/U J/U normalized to:

a,d 0.75 0.01 peak max.
b,e 0.45 0.04 peak max.
c,f 1.5 0.0225 1/20× peak max

Consequences of PT:

Broad peaks arise due to the inclusion of short
range correlations.

Considerable reduction of the SF-peak due to the
correction of the mean field in PT.

Underlying HO-Potential

• Experiments: additional trapping potential in
order to confine the condensate to a finite region
of the optical lattice.

• the inhomogeneity caused by the trapping po-
tential leads to slowly varying on-site energies εi,

εi = α(i − ic)
2

which can be interpreted as a spatially varying
chemical potential µ − εi:

Expansions Patterns for a 3D-lattice:

3D-lattice: 153-sites

Lattice site occupation number along a cut
through the trap center:
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Expansion pattern: cut along the kx-axis
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Corrections in the expansion pattern
in % of the peak maximum:
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Conclusions:

The inclusion of short range correlations leads to:

a modification of single lattice site observables:

number fluctuations σN in the MI-region

particularly strong corrections in 1D as GW is
only a good approximation in higher dimen-
sions.

modifications in the expansion pattern:

homogeneous lattice =⇒ broad peaks are aris-
ing

HO-trap =⇒ modification of the peak struc-
ture e.g. peak broadening.
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