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The Hamiltonian
We consider a system of N identical bosons in an external potential V̂ (~r)
=⇒ h(~r) = T̂ + V̂ (~r) unperturbed one-particle Hamiltonian
=⇒ Bosons interact via aδ-function potential:W (~r1 − ~r2) = λ0 δ(~r1 − ~r2)

λ0 = 4πasc
m , asc - is the s-wave scattering length.

Here, repulsive interaction onlyλ0 > 0.

H =
∫

d~rΨ†h Ψ + λ0

2

∫
d~r Ψ† Ψ† Ψ Ψ

Fragmentation
The general mathematical formulation of the condensation phenomenon for an
ideal gas in equilibrium has been given by Penrose and Onsager [1] in 1956. The
generalized one-particle reduced density matrix of N-particle system:

ρN (~r ′, ~r) = N
∫

ΨN†(~r ′, ~r2, · · · , ~rN )ΨN (~r, ~r2, · · · , ~rN ) d~r2 d~r3 · · · d~rN

whereΨN is a normalized N-body wave function. One can write:

ρN (~r ′, ~r) =
∑

i ni ϕ
∗
i (~r

′)ϕi(~r)

Eigenvalues ofρN -occupation numbers, eigenvectors -natural orbitals
CondensationMACROscopic occupation of one natural orbital [1]

FragmentationMACROscopic occupation of several natural orbitals [2]

Gross-Pitaevskii Mean-Field
Usual assumption:All bosons reside in a single spatial orbitalϕ

ΨN
GP (~r1, ~r2, . . . , ~rN ) = ϕ(~r1)ϕ(~r2) · · ·ϕ(~rN )

EGP = N
∫

ϕ∗hϕ d~r +
λ0 N(N−1)

2

∫
|ϕ|4 d~r

The well-knownGross-Pitaevskii (GP)mean-field equation [3] is obtained by
minimizing this energy:

{ h(~r) + λ0(N − 1)|ϕ(~r)|2}ϕ(~r) = µGP ϕ(~r)

The reduced one-particle density operator and the corresponding spatial density
are given by

ρGP (~r ′, ~r) = ϕ∗(~r ′)ϕ(~r) andρGP (~r) = |ϕ(~r)|2 respectively.

Main conclusion: By definition, this equation cannot describe fragmentation
because all bosons reside in a single orbital.

Best Mean-Field Description
Main assumption:Bosons may reside in several different spatial orbitalsφi

ΨN
BMF = Ŝφ1(~r1) · · ·φ1(~rn1

)φ2(~rn1+1) · · ·φ2(~rn1+n2
)φ3(~rn1+n2+1) · · ·φ3(~rN )

whereŜ is the symmetrizing operator andN ≡ n1 + n2 + n3.

EBMF = n1h11 + λ0
n1(n1 − 1)

2

∫
|φ1|

4d~r + 2λ0n1n2

∫
|φ1|

2|φ2|
2d~r

+ n2h22 + λ0
n2(n2 − 1)

2

∫
|φ2|

4d~r + 2λ0n1n3

∫
|φ1|

2|φ3|
2d~r

+ n3h33 + λ0
n3(n3 − 1)

2

∫
|φ3|

4d~r + 2λ0n2n3

∫
|φ2|

2|φ3|
2d~r

By minimizing this energy with respect to the orbitals under the constraints that
they are orthogonal and normalized, i.e.,< φi|φj >= δij, we get the following
three coupledBest Mean-Field (BMF)equations [4] for the optimal orbitals:

{ h(~r) + λ0(n1 − 1)|φ1(~r)|2 + 2λ0n2|φ2(~r)|2 + 2λ0n3|φ3(~r)|2}φ1(~r) =

= µ11 φ1(~r) + µ12 φ2(~r) + µ13 φ3(~r)

{ h(~r) + λ0(n2 − 1)|φ2(~r)|2 + 2λ0n1|φ1(~r)|2 + 2λ0n3|φ3(~r)|2}φ2(~r) =

= µ21 φ1(~r) + µ22 φ2(~r) + µ23 φ3(~r)

{ h(~r) + λ0(n3 − 1)|φ3(~r)|2 + 2λ0n1|φ1(~r)|2 + 2λ0n2|φ2(~r)|2}φ3(~r) =

= µ31 φ1(~r) + µ32 φ2(~r) + µ33 φ3(~r)

Main featuresof this approach should be mentioned:

• This mean-field includesGP as a special case: when the occupation of two
of the three orbitals vanish, i.e.n2 = n3 = 0, the system ofBMF equations
is reduced to the singleGPequation and the respective energy coincides with
theGPone.

• By construction, this method can describe fragmentation fora finite number
of fragments. The reduced one-particle density operator can be written as
ρBMF (~r ′, ~r) =

∑3
i ni φ

∗
i (~r

′)φi(~r) and the corresponding spatial density
becomesρBMF (~r) = n1|φ1(~r)|2 + n2|φ2(~r)|2 + n3|φ3(~r)|2.

• Occupation numberni are variational parameters, minimizing the full energy.

In order to find an optimal value of the energy,BMF equations are solved for
all possible occupation numbers, and the respective energies are evaluated and
compared.
As we mentioned before, the results obtained for the specificoccupation num-
bersn2 = n3 = 0 are identical to the standartGPones. Therefore, within this
computational scheme we automatically clarify the question on the favorability
of fragmentation.

Proposed Double-Trap Potential

-1

0

1

2

3

4

5

6

-30 -20 -10 0 10 20 30

P
ot

en
tia

l E
ne

rg
y

x

C

-1

-0.5

0

0.5

1

1.5

2

-4 -2 0 2 4

V
in

ne
r(x

)

x

A=0.7
A0=0.8
A=0.95

-1

0

1

2

3

4

5

6

-10 -5 0 5 10

x

B=0.03
B0=0.1
B=0.16

Our proposed 1D double-trap potentials effectively may be obtained as asuper-
position of two potentials (inner and outer). We model the inner potential as:

Vinner(x) = ω(x
2

2 − A)e(−Bx2)

whereA andB are parameters of the inner trap (see Right figure),A0 = 0.8,
B0 = 0.1 are reference parameters.
As an outer trap embedding the inner one we used:

• Infinite square well with half-width equalC obtained by placing the infinite
walls at[−C : +C] (see black curve in the Left figure)

• Smooth power potentialVouter(x) = (0.035x)10 (red curve in the Left figure).

Default outer trap is a square well with walls atC0 = 9.5π.
Kinetic energy:T̂ = −ω

2
∂2

∂x2 implying that coordinatex and all the parameters
A, B, C of the double-trap potential are dimensionless while all energies andλ0
are now in units of the frequencyω.

Optimal Energies

Keeping the quantityλ = λ0(N −1) fixed,BMF equations have been solved nu-
merically for the systems of different numbers of bosons, and different fractional
occupation numbersn1, n2, n3. Due to symmetry of our double-trap potential,
instead of searching for the minimum of a functionalE(n1, n2, n3) of two inde-
pendent variables(n3 ≡ N − n1 − n2), we can do the search usingn2 = n3.
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Main Observation:
For λ = 0.9 andN ≤ 2400, λ = 1.3 andN ≤ 6400 the optimalBMF solution
energetically more favorable thenGPone. Therefore, for these systems the

Ground State is three-fold FRAGMENTED!

The combined potential (Vinner +Vouter) has three well-separated wells. There-
fore, if fragmentation takes place, bosons will be accumulated in eachof these
three wells. More precisely, the reduced one-particle density of the system of
N identical bosons in this double-trap potential would have threemacroscopic
(with respect to N) eigenvalues. The condition that all three wellsare well sep-
arated from each other implies that the respective eigenvectors (natural orbital)
will be predominantly localized in each of these wells.

Optimal Orbitals and Occupation numbers

Double-trap potential withinfinite walls, λ = 1.3:

• For N = 6000: n1/N ≈ 68.58% for the orbital localized in the central well
andn2/N ≈ n3/N = 17.71% for the orbitals localized in the outer wells

• ForN = 25: n1/N ≈ 67.5% andn2/N ≈ n3/N = 16.25%.

Double-trap potential with asmooth power outer trap, λ = 1.3:

• ForN = 3000: n1/N ≈ 72.2% for the orbital localized in the central well and
n2/N ≈ n3/N = 13.9% for the orbitals localized in the outer wells

• ForN = 25: n1/N ≈ 71.0% andn2/N ≈ n3/N = 14.5%.

-C/2 0 C/2 -C/2 0 C/2 -C/2 0 C/2

D
en

si
ty

   
   

   
   

   
   

   
   

   
O

rb
ita

l

x

(GP)  N=25  N=6000

E/N=-0.0871057 E/N=-0.0895932 E/N=-0.0871064

-C/2 0 C/2 -C/2 0 C/2 -C/2 0 C/2

D
en

si
ty

   
   

   
   

   
   

   
   

   
O

rb
ita

l

x

(GP)  N=25  N=3000
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The optimalBMF orbitalsφ1(x), φ2(x), φ3(x) and respective density per particle
ρBMF = (n1|φ1|

2 + n2|φ2|
2 + n3|φ3|

2)/N of the three-fold fragmented ground
state for the double-trap potentials with infinite walls (Left figure) and with a
smooth power outer trap (Right figure). The energy per particle is indicated.
For convenience, the base-line of the orbitalsφ2(x) andφ3(x) has been moved
upwards artificially from zero. All orbitals and densities are dimensionless and
plotted as function of the dimensionless coordinatex, C = C0 = 9.5π.

Manipulation of Fragmentation
By ”manipulation of the fragmentation” we mean the possibility to choose the
shape of the trap potential as well as the number of bosons (and possibly also
their scattering length) in such a way that all fragments acquire the desired
occupation numbers.

Manipulating the fragmentation by varying the inner trap
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Shown is the relative occupation of the orbital localized in theinner well.
Left figure: Dependence on the parameterA. (B = B0, C = C0)
Right figure: Dependence on the parameterB. (A = A0, C = C0)

Manipulating the fragmentation by varying the outer trap
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Half-width of the outer trap (C parameter)
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Shown is the relative occupation of the orbital localized in theinner well as a function ofC
(half-width of the outer trap). All other parameters are keptat their reference valuesA0 andB0.

Critical parameters of fragmentation
From the above figure it is clear that the fragmentation starts to take place when
λ exceeds some threshold. Another limitation comes from the fact that whenλ
becomes so large that the chemical potential is larger than the barrier height,
particles can flow freely out of the inner trap and the fragmentation disappears.
Consequently, there is a maximal numberNmax of bosons in a fragmented
ground state and this number depends on the double-trap potential.
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Manipulating the maximal number of bosonsNmax in the fragmented ground state by varying
the double-trap potential. Left figure: Dependence on the parameterC. All other parameters are
kept at their reference valuesA0 andB0. Right figure: Dependence on the parameterB (note the
logarithmic scale). All other parameters are kept at their reference valuesA0 andC0.

Summary
We have investigated the fragmentation phenomenon in the ground state of a
repulsive condensate immersed into the double-trap potential.

• We demonstrate that fragmentation can be successfully characterized by the
Best Mean-Fieldapproach.

• For many choices of the potentials, the macroscopic occupation of the three
orbitals may become energetically more favorable than accumulating allthe
particles in a single orbital.

• The fragmentation of the ground state is found to occur when the number of
bosons exceeds some critical value which depends on the scattering length
and on the shape of the inner trap potential.

• If fragmentation is observed for a large number of bosons, then it exists also
for any smaller number of bosons (of courseN > 1) whenλ is kept fixed.
Whenλ is kept fixed, there exists, however, a maximal number of bosons for
which the ground state is fragmented.

• The interplay between the inner and outer trap potentials provides a sensitive
tool to manipulate fragmentation of repulsive condensates.
Varying the number of bosons in the condensate and the scattering length are
also instrumental in this respect.

• The results obtained for three-well potentials can naturally be extendedto an
array of multiple wells.

• Finite particle number is needed to observe fragmentation in the ground state.
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