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The Hamiltonian Proposed Double-Trap Potential

Manipulation of Fragmentation
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We consider a system of N identical bosons in an externahtiaté’ ()
— h(7) =T + V(7) unperturbed one-particle Hamiltonian

—> Bosons interact via &function potential: W (7, — 75) = \g0(7] — 73)
Ao = Zlsc g . - is the s-wave scattering length.

m
Here, repulsive interaction onhy > 0.
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Fragmentation | | |
Our proposed 1D double-trap potentials effectively may be obtainesageaa-

The general mathematical formulation of the condensati@npmenon for an POsition of two potentials (inner and outer). We model the inner poteasia
ideal gas in equilibrium has been given by Penrose and OngHde 1956. The i (—Bx?)

_ _ _ _ _ _ Vinner(z) = w(% — Ale
generalized one-particle reduced density matrix of Niparsystem: where A and B are parameters of the inner trap (see Right figur) = 0.8,
ION(Fla F) =N f \IJNTO?/? FQ) T 7FN)\IJN(F7 7?27 T 77?N> dFQ dFS e dFN

By = 0.1 are reference parameters.
where¥! is a normalized N-body wave function. One can write: As an outer trap embedding the inner one we used:
PN (77 =325 i o (7 )i (F)

Eigenvalues of’" -occupation numbergigenvectorsnatural orbitals
CondensatioMACROscopic occupation of one natural orbital [1]

=

e Infinite square well with half-width equdl’ obtained by placing the infinite
walls at[—C : +C] (see black curve in the Left figure)

e Smooth power potentidl,,;.-(z) = (0.0352)' (red curve in the Left figure).

Default outer trap is a square well with walls@f = 9.57.
. . ~ 2 . . .
Kinetic energy:T = —% 0 Implying that coordinate: and all the parameters
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MACROscopic occupation of several natural orbitals [2]

Gross-Pitaevskil Mean-Field

Usual assumptiorAll bosons reside in a single spatial orbital

are now Iin units of the frequenay.

VA p(71, 7, .., T) = @(F)p(7) - - - (P
merically for the systems of different numbers of bosons, and differentdred

S A N(N-1 -
Eqp=N [ ¢*hpdi+ = <2 )f\90|4d7°

_ 3 _ _ _ _ instead of searching for the minimum of a functio&dl., no, n3) of two inde-
The well-knownGross-Pitaevskii (GPnean-field equation [3] is obtained bypendent variable@; = N — nq — ny), we can do the search using = ns.
minimizing this energy:

A=A((N-1)=0.9
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The reduced one-particle density operator and the comelspg spatial density
are given by

pap(T', ) = o*(7")p(r) andpg p(r) = (),
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2 respectively.
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Main conclusion: By definition, this equation cannot describe fragmentation
because all bosons reside in a single orbital.
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Main Observation:
ForA = 0.9andN < 2400, A = 1.3 and N < 6400 the optimalBMF solution
energetically more favorable th&P one. Therefore, for these systems the

Ground State Is three-fold FRAGMENTED!
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Occupation of the inner-well orbita} N

Best Mean-Field Description

Main assumptionBosons may reside in several different spatial orbitals

\PgMF — Sgbl(ﬂ) T ¢1(Fn1)¢2<77n1+1> T ¢2(Fn1+n2)¢3<77n1+n2+1) T ¢3(FN>

whereS is the symmetrizing operator ad = n; + no + ns.

ni(n; —1) 4o / A
E = n1h A dr + 2\ d . .
BMF = M1+ A0——, / $1"dr + 2Xomamg [ |61%|éol The combined potentialf,,,,c; + Vouter) has three well-separated wells. There-
no(ng — 1) 45 9, 12 g fore, If fragmentation takes place, bosons will be accumulated in ebitiese
+ nahgg + Ag 9 /’@‘ B 2)‘07“”3/ 91/ ¢s|"dr three wells. More precisely, the reduced one-particle densitheystem of
n3(ng — 1) 1., 2N, 19 0 N identical bosons in this double-trap potential would have timaeroscopic
+ n3hs3 + Ao 9 /‘¢3‘ dr + 2)‘()”2”3/ P2l"|¢s|"dr (with respect to N) eigenvalues. The condition that all three vastswell sep-

arated from each other implies that the respective eigenvectatsral orbital)

By minimizing this energy with respect to the orbitals undex tonstraints that will be predominantly localized in each of these wells.

they are orthogonal and normalized, i-€.¢9;|¢; >= 4;;, we get the following

three coupledest Mean-Field (BMFgquations [4] for the optimal orbitals: Double-trap potential witinfinite walls A — 1.3:

e For N = 6000: n;/N = 68.58% for the orbital localized in the central well

{ h(F) + Xo(ng — D]o1(P))? + 2Agn2|d2(F)|* + 2Xgns3|d3(F) |} é1(7) andny /N =~ n3/N = 17.71% for the orbitals localized in the outer wells

2 = 111 ¢1§F) + 12 ¢2(7) e ¢3(T) e For N = 25: ny/N =~ 67.5% andny/N ~ n3/N = 16.25%.
{ 1(7) + Ao(ng — 1)|@a(7)]|” + 2Agn1|@1(7)] = 2>\on3|¢3(f>! t 2(r) = Double-trap potential with amooth power outer tragp\ = 1.3:
2 = K21 ¢1g’“) + 122 ¢o(7) + s 3(7)
{ A7) + Ao(ng — 1)[@3(7)|” + 2A0n1|91(7)|” + 2Agna|d2(r)| "} ¢3(7) R no/N =~ n3/N = 13.9% for the orbitals localized in the outer wells

)

=

= 31 91(7) + p32 $2(7) + p3z Pa( o FOr N = 25: n /N ~ 71.0% andny /N ~ ng/N = 14.5%.

Main featureof this approach should be mentioned:

(GP) N=25 N=6000 (GP) N=25 N=3000

e This mean-field include&P as a special case: when the occupation of two
of the three orbitals vanish, i.e., = n3 = 0, the system oBMF equations
IS reduced to the singléP equation and the respective energy coincides with
the GPone.

e By construction, this method can describe fragmentatioraffinite number
of fragments. The reduced one-particle density operatorbeawritten as
ppmr(™ 7 =39 n, o¥(7")¢;(r) and the corresponding spatial density

b N 12 12 (2.
ecomep gy () = | P17 + n2|@a(r)|” + ns|@s(7)| The optimalBBMF orbitals¢q(z), ¢2(x), ¢3(x) and respective density per particl

e Occupation numbet; are variational parameters, minimizing the full energy; .. . — (n1] 1|2 + no|do|2 + nalds|?) /N of the three-fold fragmented groun

In order to find an optimal value of the ener@®MF equations are solved forstate for the double-trap potentials with infinite walls (Left figuand with a
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all possible occupation numbers, and the respective esgegge evaluated andsmooth power outer trap (Right figure). The energy per particle is ireticat

compared. For convenience, the base-line of the orbitalér) and¢3(z) has been moved
As we mentioned before, the results obtained for the spamificipation num- upwards artificially from zero. All orbitals and densities are disienless and
bersny = ng = 0 are identical to the standa®P ones. Therefore, within this plotted as function of the dimensionless coordingté' = Cy = 9.57.
computational scheme we automatically clarify the questio the favorability

of fragmentation.

A, B, C of the double-trap potential are dimensionless while all energies@nd

Keeping the quantity = \y(N — 1) fixed, BMF equations have been solved nu-

By "manipulation of the fragmentation” we mean the possibility to choose the
shape of the trap potential as well as the number of bosons (and possibly alsc
their scattering length) in such a way that all fragments acquire theedes
occupation numbers.

Manipulating the fragmentation by varying the inner trap
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Manipulating the fragmentation by varying the outer trap

100

I T

95 - A=0.827
(.
90 -

A=0.9
e =10

-well orbital (%)

il

85

80

75 -
A=1.3

Occupation of the inner

70 -
>\.\.

65
15

20 25 30 35
Half-width of the outer trar (C parameter)

Shown is the relative occupation of the orbital localized in itimeer well as a function o’
(half-width of the outer trap). All other parameters are kagheir reference value$, and B,

Critical parameters of fragmentation

From the above figure it is clear that the fragmentation starts ®pkice when

A exceeds some threshold. Another limitation comes from the fact that when
becomes so large that the chemical potential is larger than the barigdt hei
particles can flow freely out of the inner trap and the fragmentation disespea
Consequently, there is a maximal numbey,,,, of bosons in a fragmented
ground state and this number depends on the double-trap potential.

12000 =

occupation numbers;, no, n3. Due to symmetry of our double-trap potential,
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Manipulating the maximal number of bosong,,.. in the fragmented ground state by varying
the double-trap potential. Left figure: Dependence on the patend. All other parameters are
kept at their reference valuels and B,,. Right figure: Dependence on the paramétdnote the
logarithmic scale). All other parameters are kept at théere:ce values!, andCj.

Summary

0 ]

We have investigated the fragmentation phenomenon in the ground state of a
repulsive condensate immersed into the double-trap potential.

e \We demonstrate that fragmentation can be successfully charadteszhe
Best Mean-Fieldpproach.

e For many choices of the potentials, the macroscopic occupation of the three
orbitals may become energetically more favorable than accumulatinigeall
particles in a single orbital.

e The fragmentation of the ground state is found to occur when the number of
bosons exceeds some critical value which depends on the scattering length
and on the shape of the inner trap potential.

e If fragmentation is observed for a large number of bosons, then it exists also

e For N = 3000: n1/N = 72.2% for the orbital localized in the central welland for any smaller number of bosons (of courSe> 1) when\ is kept fixed.

When\ is kept fixed, there exists, however, a maximal number of bosons for
which the ground state is fragmented.

e The interplay between the inner and outer trap potentials provides agensiti
tool to manipulate fragmentation of repulsive condensates.
Varying the number of bosons in the condensate and the scattering length are
also instrumental in this respect.

e The results obtained for three-well potentials can naturally be exteodau
array of multiple wells.

e Finite particle number is needed to observe fragmentation in the grourd stat
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