THEORETICAL ASPECTS OF THE BCS-BEC CROSSOVER

G. C. Strinati

Dipartimento di Fisica Università di Camerino, Italy

Summary:

- Trapped Fermi atoms: Fano-Feshbach resonances \implies atomic scattering length a_F tuned from negative to positive values across resonance
- **Theoretical issue** : single- vs multi-channel Hamiltonian
- **Broad and narrow** Fano-Feshbach resonances of ${}^{6}Li$ at (about) 822G and 543G
- Multi-channel calculation for molecular ⁶Li
- Effective **single-channel Hamiltonian** sufficient to reproduce all relevant features of scattering problem *and* to realize BCS-BEC crossover !

BCS-BEC crossover: Evolution

from Cooper pairing (Fermi character)to condensation of composite bosons (Fermi degrees of freedom quenched).

- Recent **experimental advances** with trapped Fermi atoms have enhanced interest in this problem.
- Trapped Fermi gases are **ideal testing ground** for theories \Leftarrow only few degrees of freedom !

• Attractive interaction between fermions provided by **Fano-Feshbach resonance** \Leftarrow mixing of channels with different (electronic and nuclear) spins.

• Fano-Feshbach resonance: resonant state becomes true bound state **by varying the applied magnetic field** \implies a_F changes sign and provides a mechanism to **cross over** from BCS to BEC.

FIG. 1

& Two-body problem :

• Onset of bound state when $a_F > 0$ can be described by **point-contact interaction** $v(\mathbf{r}) = v_0 \delta(\mathbf{r})$ (suitable regularization required) \implies a_F is the sole relevant parameter !

 However, presence of (at least) two channels in a Fano-Feshbach resonance ⇒
 fermions are transferred from scattering channels into resonance channel to form a boson
 ⇒ should two-body Hamiltonian require this boson as an essential ingredient ?

Ensuing many-body Hamiltonian would be built on the mixing of these two (scattering and resonant) channels

 \iff fermions and bosons in thermal equilibrium would be present at the same time

theory of "**resonance superfluidity**" (Timmermans et al.; Holland et al.; Griffin et al.).

4

G Two model many-body Hamiltonians :

• fermions only

$$\begin{split} \mathbf{H}_{\mathrm{f}} &= \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} \, c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \, v_{0} \, \sum_{\mathbf{k}\mathbf{k}'\mathbf{q}} c_{\mathbf{q}/2+\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{q}/2-\mathbf{k}\downarrow}^{\dagger} c_{\mathbf{q}/2-\mathbf{k}\downarrow}^{\dagger} c_{\mathbf{q}/2+\mathbf{k}\uparrow}^{\dagger} \\ &(\sigma = \uparrow, \downarrow) \end{split}$$

• with mixing of fermions and bosons $H_{f b} = \sum_{\mathbf{k}\sigma} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{k}\mathbf{k}'\mathbf{q}} c^{\dagger}_{\mathbf{q}/2+\mathbf{k}\uparrow} c^{\dagger}_{\mathbf{q}/2-\mathbf{k}\downarrow} c_{\mathbf{q}/2-\mathbf{k}'\downarrow} c_{\mathbf{q}/2+\mathbf{k}'\uparrow}$ $+ \nu \sum_{\mathbf{q}} b^{\dagger}_{\mathbf{q}} b_{\mathbf{q}} + \left(g \sum_{\mathbf{k}\mathbf{q}} b^{\dagger}_{\mathbf{q}} c_{\mathbf{q}/2-\mathbf{k}\downarrow} c_{\mathbf{q}/2+\mathbf{k}\uparrow} + H.c.\right)$

$$c \longleftrightarrow \text{ fermions} \qquad b \longleftrightarrow \text{ bosons}$$

Question :

• What is the "**minimal**" theoretical model to describe the BCS-BEC crossover with trapped Fermi atoms ?

• Is it necessary to use a fermion-boson model \leftrightarrow H_{fb} with (at least) two channels?

• Would rather be enough to use **a fermiononly model** \longleftrightarrow H_f, with a single channel and a point-contact interaction ?

This question needs to be answered **before** trying to interpret the experimental results.

Main point :

both experimental realization of BCS-BEC crossover with trapped Fermi atoms

and theoretical use of single- or multi-channel models **depend on the "width"** of Fano-Feshbach resonance

(two aspects strictly related to each other).

[S. Simonucci, P. Pieri, and G.C. S., cond-mat/0407600]

• For definiteness: **broad and narrow** Fano-Feshbach resonances of ${}^{6}Li$ at about 822G and 543G (selected to realize BCS-BEC crossover experimentally)

- Multi-channel calculation by Born-Oppenheimer scheme
- Nuclear wave equation solved for s-wave (it contains hyperfine and Zeeman couplings).

• Low-energy sector spanned by five channels: singlet ${}^{1}\Sigma_{g}^{+}$ with spin configurations $|0, 0 >_{e} |0, 0 >_{n}$ and $|0, 0 >_{e} |2, 0 >_{n}$ (resonance channels) triplet ${}^{3}\Sigma_{u}^{+}$ with spin configurations $|1, 1 >_{e} |1, \overline{1} >_{n}$, $|1, 0 >_{e} |1, 0 >_{n}$, and $|1, \overline{1} >_{e} |1, 1 >_{n}$ (scattering channels)

Representative outcomes of calculation : FIG. 2 Molecular energy curves • FIG. 3 Scattering length vs magnetic field • Several quantities can be extracted from calculation: (i) Binding energy $\mathbf{E}_{\mathbf{b}}$ compared to $\epsilon_0 = (Ma_F^2)^{-1}$ (ii) Radius $\bar{\mathbf{R}}$ of bound wave function compared to $a_F/\sqrt{2}$ (iii) Radius $\bar{\mathbf{R}}_2$ of component in resonance channel (iv) Wave-function projection $|\mathbf{w}_1|^2$ in scattering channel (v) Projection $\langle \phi_{cp} | \mathbf{w}_1 \rangle$ onto bound wave function $\phi_{\rm c\,p} = \sqrt{2/a_F} \exp(-\hat{R}/a_F)$ for contact potential (vi) "Effective range" \mathbf{r}_0 obtained from scattering amplitude $f(k) = (g(k) - ik)^{-1}$ with $g(k) = -a_F^{-1} + \mathbf{r_0}k^2/2$. Table I

Fig.2. Molecular energy curves for the singlet (S) and triplet (T) states of lowest energy vs the nuclear separation R. The inset shows the details of the crossing at R = 18 a.u..

Fig.3. Scattering length a_F vs magnetic field B. The inset shows the details of the narrow resonance at about 543G.

B(G)	a_F	$E_{\rm b}/\epsilon_0$	$\sqrt{2}\bar{R}/a_F$	$ar{R}_2/ar{R}$	$ w_1 ^2$	$\langle \phi_{ m cp} w_1 angle$	r_0
650	1.29	1.068	1.00053	.039	.99669	.972	.085
750	6.26	1.014	1.00004	.008	.99986	.994	.087
800	26.2	1.003	1.00024	.002	.99998	.999	.088
850	-25.3						.088
1100	-5.17						.090
1300	-4.35						.090
.2200	2.09	.0425	1.148	.022	.062	.194	-121
.2210	4.85	.0581	1.517	.007	.134	.289	-121
.2216	41.7	.9066	.5853	.002	.304	.550	-124
.2218	-34.3						-125
.2220	-10.7						-127
.2225	-4.22						-126

Table I. Comparison of the molecular calculation with the effective single-channel model, for the broad resonance at about 822*G* and for the narrow resonance at about 543*G*. For the narrow resonance, only decimal digits after 543*G* are reported in the first column. Both a_F and r_0 are in 10^3 a.u..

For broad resonance \implies

effective single-channel model with contact potential reproduces all results of multi-channel calculation !

In particular, note that:

• $\mathbf{E_b}/\epsilon_0$, $\mathbf{\bar{R}}/\mathbf{a_F}/\sqrt{2}$, $|\mathbf{w_1}|^2$, and $<\phi_{c\,p}|\mathbf{w_1}> \simeq 1$

• Extension $\overline{\mathbf{R}}_2$ of boson (introduced in resonancesuperfluidity theory) << extension $\overline{\mathbf{R}}$ of internal wave function of composite boson

•
$$\mathbf{r_0}/\mathbf{a_F} << 1.$$

Important point for BCS-BEC crossover

is to complement the above analysis by:

- Fermi wave vector k_F characteristic of the trap
- Minimum **experimental accuracy** of magnetic field.

$\clubsuit \quad \text{Reasoning goes as follows}:$

Dimensionless parameter $(k_F a_F)^{-1}$ exhausts BCS-BEC crossover within ≈ 1 about unitarity limit $(k_F a_F)^{-1} = 0$ irrespective of theoretical model !

BCS $(a_F < 0)$ and **BEC** $(a_F > 0)$ regimes reached for $k_F|a_F| \ll 1$, while in **crossover region** $k_F|a_F| \approx \infty$

To span crossover \implies identify three values of $(\mathbf{k_F} \mathbf{a_F})^{-1}$ (say, -1.0, 0.0, 1.0), by tuning magnetic field across FF resonance

For experiments with broad resonance (at 822G) $k_F = 2 - 3 \times 10^{-4}$ a.u. \Longrightarrow above values of $(k_F a_F)^{-1} \longleftrightarrow B = (1300, 822, 730) G$ separated by $\delta B \gtrsim 100G$ much larger than minimum experimental accuracy ! • For these values of $B \implies$ single-channel model with contact potential totally appropriate for two-body scattering !!!

(see Table I)

Situation reversed for narrow resonance at (about) 543G :

above values of $(k_F a_F)^{-1} \longrightarrow$

B = (543.2225, 543.2217, 543.2209) G

separated by $\delta B \simeq 0.001G$ fifty times smaller than minimum experimental accuracy !!!

$$\Longrightarrow$$

No way of realizing BCS - BEC crossover with narrow resonance of ${}^{6}Li$! In addition, $\mathbf{r_0} \, \mathbf{k_F} < 10^{-2}$

for the broad resonance

energy dependence of scattering properties (over and above that resulting for contact potential)

is **irrelevant** !!!

"resonance superfluidity" theory \mathbf{not} required.

4 To complete the mapping

onto single - channel model \implies identify **effective spin states** $|\uparrow\rangle_{\text{eff}}$ and $|\downarrow\rangle_{\text{eff}}$. From molecular calculation, for broad resonance wave function is (essentially) a triplet both for electrons and nuclei \implies

$$|\uparrow\rangle_{\text{eff}} \qquad \longleftrightarrow \qquad |1/2, -1/2 >_e |1, 0 >_n$$
$$|\downarrow\rangle_{\text{eff}} \qquad \longleftrightarrow \qquad |1/2, -1/2 >_e |1, 1 >_n$$

Question : Why are these resonances "broad" and "narrow" relative to each other?

• Out of five channels spanning low energy, two singlets ${}^{1}\Sigma_{q}^{+}$ with spin

 $|0,0>_e |0,0>_n$ and $|0,0>_e |2,0>_n$ interact mostly with **triplet** ${}^3\Sigma_u^+$ with spin $|1,\overline{1}>_e |1,1>_n$

• Figure 4

magnetic field dependence of energy of last singlet bound state (with 38 nodes) (dashed line) *relative to* threshold of triplet channel (dotted line) (when channels are decoupled) Two curves cross each other at (about) 550G.

Fig.4. Mechanism for the narrow and broad Fano-Feshbach resonances.

• Triplet channel has **virtual state** at threshold with large (negative) background scattering length $(\mathbf{a}_{bg} \simeq -3790 \text{ a.u.})$

• One linear combination of two singlet channels decouples from triplet virtual state (that one crossing threshold at about 550G)

• Other combination which couples with triplet forced to have an **avoided crossing** (when interaction of singlets and triplet is restored)

• Combination which decouples from triplet \longrightarrow mantains singlet character through crossing \longrightarrow "narrow" resonance at about 543G

• Combination which couples with triplet \longrightarrow (almost) full triplet character past avoided crossing

• Its energy broadening tends asymptotically to broadening $(M \mathbf{a}_{bg}^2)^{-1}$ of virtual state

inset of Fig. 4

 \longrightarrow it crosses threshold **slowly** vs magnetic field \longrightarrow this accounts for "**broad**" **nature of resonance** at about 822G.

(2) Comparison with Quantum Monte Carlo results :

- T = 0 chemical potential vs $(k_F a_F)^{-1}$ **FIG. 7**
- T = 0 excitation gap vs $(k_F a_F)^{-1}$ **FIG. 8**

[P. Pieri, L. Pisani, and G.C. S., Phys. Rev. B **70**, 094508 (2004)]

Fig.5. Comparison between experimental and theoretical axial density profiles. Experimental data from [M. Bartenstein *et al.* (2004)] (dots) are shown for three diffeent values of the magnetic field *B* tuning the FF resonance. Theoretical results at T = 0 obtained by our theory (full lines) and by BCS mean field (dashed lines) are shown for the corresponding couplings $(k_F a_F)^{-1}$ given in the text. The upper (lower) panel refers to the estimated number of atoms $N = 4 \times 10^5$ ($N = 2.3 \times 10^5$).

Fig.6. Comparison between experimental (dots) and theoretical (triangles) normalized root-mean square axial radius across the crossover regime. Experimental data are taken from [M. Bartenstein *et al.* (2004)]. The values of $(k_F a_F)^{-1}$ and of the non-interacting root-mean square axial radius used also for the experimental data are obtained with $N = 2.3 \times 10^5$.

Fig.7. Chemical potential at zero temperature vs coupling parameter $(k_F a_F)^{-1}$. The results of the present theory (T-matrix(I) in the legend) and of its version without inclusion of the self-energy shift Σ_0 (T-matrix(II)) are compared with BCS mean-field (BCS), Fixed-node QMC data (FNQMC) from [Astrakharchik *et al.* (2004)], Galitskii's expression for the dilute Fermi gas (Galitskii) and the asymptotic expression for strong-coupling, using the result $a_B = 0.6a_F$.

Fig.8. Excitation gap $\Delta_{\rm m}$ at zero temperature vs coupling parameter $(k_F a_F)^{-1}$. The results of the present theory (T-matrix) are compared with the Green's function QMC data (GFQMC) from [Carlson *et al.* (2004)] and with BCS mean-field (BCS).

Conclusions :

• **Experiments** : to realize BCS-BEC crossover with trapped Fermi atoms using FF resonances, watch out for values of $\mathbf{k_F}$ (characteristic of the trap) **minimum experimental accuracy** of B

• **Theory**: when FF resonance is ok to realize BCS-BEC crossover \implies **effective single-channel** Hamiltonian with contact interaction can be used

• In practice, it appears that "resonance superfluidity" theory is **not required**.

- Excellent comparison with
- (i) Experimental data for ${}^{6}Li$
- (ii) Quantum Monte Carlo results.