

Workshop on "Nanoscale Fluctuations in Magnetic and Superconducting Systems" Max-Planck Institute, Dresden, 14 May 2005

Electron Self-Organization and Insulating Ground State of Cuprate Superconductors

Yoichi Ando

Central Research Institute of Electric Power Industry

Outlines

- Brief History of Superconductivity
- Basics of High-Tc Cuprates
- Electron Self-Organization in High-Tc Cuprates inferred through
 - Unusual Metallic Transport
 - Peculiar Localization Behavior

Collaborators at CRIEPI

- Ichiro Tsukada Seiki Komiya Shimpei Ono
- A. N. Lavrov A. A. Taskin
- Y. Kurita T. Suzuki K. Nakamura Y. Abe

Jun Takeya Kouji Segawa

X. F. Sun

- Y. Hanaki
- T. Murayama
- Y. Nagao
- N. Miyamoto

Superconductivity

 1911: Discovery of zero resistivity in mercury by H. Kamerlingh-Onnes

(1913 Nobel Prize)

 1957: Bardeen, Cooper and Schrieffer explained the superconductivity in metals (BCS theory)

(1972 Nobel Prize)

High-Temperature Superconductivity

 Discovered by Bednorz and Müller in a copper oxide (cuprate) in 1986

Transition Temperature T_c

BCS superconductors

$$k_B T_c = 1.13\hbar\omega_D \cdot e^{-\frac{1}{N(0)|V|}}$$

Higher T_c is achieved with:

- Larger $\omega_D \rightarrow$ lighter elements
- Larger N(0) \rightarrow van Hove singularity *etc*.
- Larger $|V| \rightarrow$ stronger electron-phonon int.
- What about copper-oxide superconductors?
 Need to understand the HTSC mechanism!

High-Temperature Superconductor

Parent Cuprate La₂CuO₄: Mott Insulator

High-Temperature Superconductor

Parent Cuprate La₂CuO₄: Mott Insulator

2D Heisenberg Antiferromagnet with s = 1/2 on a square lattice

Further Doping

How does the metallic transport emerge in the CuO₂ planes when holes are doped?

Ordinary Insulator-Metal Transition

Carrier Doping to Mott Insulator

Ordinary Insulator-Metal Transition

Unusual Metallic Transport in LSCO

- Metallic behavior is observed at only 1% doping.
- Magnitude of ρ_{ab} at x
 = 0.01 is too large for a 2D metal.

(Electron mean free path would be *shorter* than their de Broglie wave length.)

Y. Ando et al., PRL 87, 017001 (2001)

Mobility of Holes

 The mobility of doped holes in the Néel state (at x = 0.01) is not much different from that at optimum doping.

Motion of a Hole in an Antiferromagnet

Motion of a single hole frustrates the AF bonds.

w: frustrated bond

 \Rightarrow Antiferromagnetic order should impose a large effective mass on doped holes.

cf. E. Dagotto, RMP 66, 763 (1994)

Mobility of Holes

 "High" mobility in the Néel state is unusual.

*Mobility in LSCO (3-10 cm²/Vs) is comparable to that in Pb (2.5 cm²/Vs) at 300 K.

Transport Mechanism (simple picture)

Random Distribution ⇒ Localize

Electron Self-Organization (Stripe Formation)

⇒ Metallic Transport

Transport through Stripes

Self-organization picture naturally explains ...

- Insensitivity of the metallic transport to the Néel ordering
- Too large bulk resistivity
- Weak doping-dependence of the mobility

Why Stripes are Formed?

Antiferromagnets tend to expel holes.

···: broken bond

8 broken bonds (Energy increase is 8J) J: exchange int. energy

7 broken bonds (Energy increase is 7J)

 Holes tend to segregate, but *macroscopic* phase segregation will increase Coulomb energy and is prohibited.

Kinetic energy can be lowered by forming stripes.

Stripes Seen in LSCO Family

 Stripe order has been actually observed by neutron and X-ray scattering experiments.

J. M. Tranquada *et al.*, Nature **375**, 561 (1995)

Peculiar Localization

We have seen ...

"Anomalous Metal" at moderate temperature down to very low doping.

However, that's not the whole story ...

However, that's not the whole story ...

Pronounced insulating behavior shows up when superconductivity is suppressed by 60-T pulsed magnetic field.

Ando-Boebinger Experiment, 1995-1996

However, that's not the whole story ...

log(1/T) divergence of resistivity at low temperature

Y. Ando et al., PRL 75, 4662 (1995)

Metal-Insulator Crossover under 60 T

"Anomalous Insulator" at low temperature $(\rho_{ab} \text{ is too small for a 2D electron-localized system.})$

Phase Diagram

- LSCO is peculiar in that:
 - Metallic behavior is observed when it should *not* be a metal.
 - Insulating behavior is observed when it should *not* be an insulator.

Ordinary Materials

Comparison

Copper Oxides

Phase Diagram (reprise)

• Unusual Insulating state shows up under the SC dome in underdoped samples when the magnetic field is applied.

"Insulating State" is *caused* by the magnetic field?

Magnetic-Field-Induced SDW/CDW

B. Lake *et al.*, Nature **415**, 299 (2002)

J. E. Hoffman et al., Science 295, 466 (2002)

It is possible that these orders in the SC state are responsible for the localized state under 60 T.

Let's sort out the magnetic-field effect in the superconducting state.

Heat Transport in the SC State

• Cuprates have a "*d*-wave" superconducting gap.

 Zero-energy quasiparticles exists near the nodes and carry heat in the *d*-wave SC state down to low T.

Quasiparticle Heat Transport at low T

Zero intercept of the κ/T vs. T² plot gives a measure of the QP transport at 0 K.

 \Rightarrow In all these samples, there are delocalized QPs that carry heat.

 \Rightarrow All the samples are "conductive" in 0 T.

Magnetic-Field Dependence (1)

Optimum and Overdoped

cf. YBa₂Cu₃O_{6.9}

M. Chiao et al., PRL 82, 2943 (1999)

Magnetic-Field Dependence (2)

Underdoped LSCO

No increase in κ with magnetic field

Specific heat shows QPs are created with magnetic field.

QPs do *not* contribute to the transport, which means they are **localized**.

Magnetic-Field Dependence of κ

X. F. Sun et al., PRL 90, 117004 (2003)

Magnetic-Field-Induced Localization

Thus, magnetic field is actually causing a quasiparticle localization in the underdoped SC state.

Field-Induced Incommensurability

x = 0.10 (underdoped)

x = 0.16 (optimally-doped)

10 Wavevector = Q B Low-energy field-induced signal D 2 4 6 8 10 12 Energy (meV)

No static stripes, only *dynamical* stripes

How about the cleanest cuprate, YBCO?

YBa₂Cu₃O_y

Phase diagram of YBCO

J. Rossat-Mignod et al., Physica B 169, 58 (1991)

Resistivity Anisotropy in YBCO

At low doping, anisotropy tends to grow with lowering T.

Resistivity Anisotropy Mapping for YBCO

Clear sign of electron self-organization for y < 6.55

Y. Ando et al., PRL 88, 137005 (2002)

QP Heat Transport in YBCO at H = 0

 \Rightarrow As in LSCO, there are delocalized QPs in all the SC samples.

 \Rightarrow All these samples are "conductive" in 0 T.

X. F. Sun et al., PRL 93, 107001 (2004)

Magnetic-Field Dependence of κ

X. F. Sun et al., PRL 93, 107001 (2004)

Localization and Self-Organization

Non-superconducting YBCO

In-Plane Resistivity for y = 6.35

Non-superconducting YBCO

In-Plane Thermal Conductivity

Quasiparticles are localized for $T \rightarrow 0$ in the *absence* of SC even in the cleanest cuprate, YBCO, at H = 0.

Kinetic-Energy-Driven Superconductivity?

Conclusions

- Self-organization of electrons in high-Tc cuprates seems to be responsible for the emergence of a metallic transport.
- At the same time, the electron self-organization seems to be responsible for the unusual localization behavior that is not well understood.
- Relevance of the electron self-organization to the occurrence of HTSC is obviously a key issue.

Key Issues (in my opinion)

- Electron Self-Organizations
- Insulating Normal State under the SC Dome
- Pseudogap and "Fermi arc" in the Normal State (*d*-wave SC and the Associated Nodal Structure)
- Peculiar Spin Dynamics and the Resonance Mode
- Unusual Roles of Phonons
- Quantum Phase Transition and Criticality

Thank you !