Competing Phases in Cuprate Superconductors

Bill Atkinson, Trent University billatkinson@trentu.ca

W. A. Atkinson, Phys. Rev. B 71 024516 (2005)

May 20, 2005

Overview

- Introduction to High T_c Superconductors; Evidence for Coexisting Order.
- The calculations; self-consistent solutions.
- Excitation spectrum.

Crystal Structure

- Electrons move within 2D Cu-O planes.
- Weak *c*-axis conductivity.
- Tune properties by chemical doping (O1 sites or Ca/Y substitution).

Narrow Bands & Low Dimensions \Rightarrow Strong Correlations

Generic Phase Diagram

Evidence for Phases Coexisting with Superconductivity

TRE

Stripes (spin-charge separation). particularly in La-based cuprates, but	Tranquada et al., Nature 375 , 561 (1995); Mook et al., Nature 395 , 580 (1998).
Glassy magnetic phases (particularly in YBa ₂ Cu ₃ O _{7-δ}) Weak charge modulations in	Buyers et al. in YBCO _{6.35} ; BSCCO: Panagopoulos et al., Solid State Commun. 126 , 47 (2003). McElroy et al., cond-mat/0406491; Howald
$Bi_2Sr_2CaCu_2O_8$	et al., PRB 67 014533 (2003).

Approach: take a simple model of competing AF and SC phases and study excitation spectrum.

Overview

- Introduction to High T_c Superconductors; Evidence for Coexisting Order.
- The calculations; self-consistent solutions.
- Excitation spectrum.

Mean-field Model

 $H = H_0 + H_{\text{int}}$

$$H_{0} = \sum_{i,j,\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} - Z \sum_{i,\mathbf{R}} V(\mathbf{r}_{i} - \mathbf{R}) \hat{n}_{i}$$

Coulomb potential due to donors

$$H_{\text{int}} = \underbrace{\sum_{i} U \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}}_{i \neq j} + \frac{1}{2} \sum_{i \neq j} V(\mathbf{r}_i - \mathbf{r}_j) \hat{n}_i \hat{n}_j + \frac{J}{2} \sum_{\langle ij \rangle} \hat{\mathbf{S}}_i \cdot \hat{\mathbf{S}}_j$$

Hubbard Long range Coulomb N.N. Exchange

$$n_{i\sigma} = \langle c_{i\sigma}^{\dagger} c_{i\sigma} \rangle \quad \Delta_{ij} = -\frac{3J}{4} \langle c_{j\downarrow} c_{i\uparrow} + c_{j\uparrow} c_{i\downarrow} \rangle$$

$$m_z(\mathbf{r}_i) = \frac{1}{2} e^{i\mathbf{Q}\cdot\mathbf{r}_i} (n_{i\uparrow} - n_{i\downarrow})$$
$$h(\mathbf{r}_i) = 1 - (n_{i\uparrow} + n_{i\downarrow})$$

Comments about mean-field calculations

- In the neighbourhood of a negatively charged impurity, the local hole concentration is high. AF moments form preferentially in underdoped regions.
 Local electronic spectrum is controlled by local potential. ⇒ Other mechanisms possible. (eg. variations of effective mass)
- $\mathsf{RVB} \Rightarrow J \sim (1 n/2)^{-2}$. Calculations ignore variations of J (and therefore Δ) with doping.
- Missing dynamics (spin-waves, other collective modes) \Rightarrow tends to overestimate m_z .
- Calculations find local minimum of energy. Looking for glassy solutions.
- Useful for studying large/disordered systems.

Self-Consistent Solutions

- SC order is suppressed by AF. Phases compete.
- AF phase is metallic (SDW \equiv AF here).
- Correlation length $\xi_{AF} \sim t/Um_z$.
- Substantial moment forms if distance d between domain walls is d > ξ_{AF}. However, moment is finite everywhere.
- AF moment is suppressed with doping by a proliferation of domain walls.

Overview

- Introduction to High T_c Superconductors; Evidence for Coexisting Order.
- The calculations; self-consistent solutions.
- Excitation spectrum.

Density of States

$$H_k =$$

$$\begin{bmatrix} \epsilon_{\mathbf{k}} & \Delta_{\mathbf{k}} & -M & 0\\ \Delta_{\mathbf{k}} & -\epsilon_{\mathbf{k}} & 0 & -M\\ -M & 0 & \epsilon_{\mathbf{k}+\mathbf{Q}} & \Delta_{\mathbf{k}+\mathbf{Q}}\\ 0 & -M & \Delta_{\mathbf{k}+\mathbf{Q}} & -\epsilon_{\mathbf{k}+\mathbf{Q}} \end{bmatrix}$$

 $M = Um_z$

- Low energy DOS largely unaffected.
- Coherence peaks suppressed. Spectral weight shifted on energy scale *M*.

Local Density of States

- Characteristic LDOS for different regions.
- Cohrence peak weight is reduced in AF regions (wiped out by inelastic scattering).

$$\rho(\mathbf{r}_{i},\omega) = \sum_{n,\sigma} \frac{|\Psi_{n,\sigma}(\mathbf{r}_{i})|^{2}}{\omega - E_{n} - \Sigma(\omega)}$$
$$\Sigma(\omega) = \Gamma \omega^{3} / (\omega^{3} + \Delta^{3})$$

Conclusion

- Low T tunneling spectrum consistent with coexisting order provided m_z is not too big.
- Doping dependence of $\lambda^{-2}(T)$ consistent with increasing m_z as one underdopes.