

Impurity effects in high T_C superconductors

J. Bobroff, S. Ouazi, H. Alloul, P. Mendels, N. Blanchard Laboratoire de Physique des Solides, Université Paris XI, Orsay

G. Collin *LLB, CEA-Saclay* J.F. Marucco, V. Guillen LEMHE, Université Paris XI D. Colson SPEC, Saclay

High T_C cuprates

metallicity + correlations + exotic superconductivity

Impurity effects in cuprates

- Impurity in more « simple » systems
 - in a metal
 - in a BCS superconductor
 - in a correlated insulator

•Impurity in High T_C cuprates

- in the metallic « normal » state
 - macroscopic properties
 - local magnetism in underdoped state with increasing doping
- in the superconducting state
 - macroscopic properties
 - density of states
 - magnetism

A magnetic impurity in a metal

A magnetic impurity in an isotropic BCS superconductor

• Decrease of T_C only if it is magnetic (Abrikosov, Gork'ov)

• Possible local bond states

An impurity in an insulating correlated system

An impurity in an insulating correlated system

 $<S_{Z}(i)> \sim e^{-r/\xi(T)} / T < S_{i}S_{j}> \sim e^{-r/\xi}$

Das et al., 2004 Tedoldi et al., 2000

Some other low dimension spin systems

Spin 1 Chain	Gap ξ < 6	• Anno	AF ?
Spin ½ Chain	ξ~1/T		No order
Spin-Peierls Chain	Gap Dimer isation		AF order
2-leg ladder	Gap ξ<3	• Ann	AF order

Common mechanism : breaking of a singlet

Non magnetic impurity effects in cuprates

The normal state

Why choosing YBaCuO?

Volume 78, Number 19

PHYSICAL REVIEW LETTERS

12 May 1997

$^{17}\mathrm{O}$ NMR Evidence for a Pseudogap in the Monolayer HgBa₂CuO_{4+ δ}

J. Bobroff,¹ H. Alloul,¹ P. Mendels,¹ V. Viallet,² J.-F. Marucco,² and D. Colson²

TABLE I.	The different monolayer compounds with the asso-
ciated T_c an	NMR oxygen width.

	$T_c^{\max}(\mathbf{K})$	¹⁷ O full width kHz/% of K_s
$HgBa_2CuO_{4+\delta}$	95	30 kHz/50%
$Tl_2Ba_2CuO_{6+\delta}$	85	15 kHz/20% [11]
$La_{2-x}Sr_xCuO_4$	38	90 kHz/120% [12]
Bi ₂ Sr ₂ CuO ₆	10	70 kHz/110% [10]
VDoCuO	02	101.11-
I BaCuO ₇	92	

YBaCuO_{6.6} 0.14 0.12 0.10 pure $Zn: x_{plane} = 3\%$ 0.04 $Zn: x_{plane} = 6 \%$ 0.02 0.00 100 200 300 400 500 0 T (K)

Impurity effects on doping and pseudogap

- No effect on doping
- No effect on pseudogap

Impurity effects on macroscopic properties

•Effect on macroscopic susceptibility :

- Zn induces an effective paramagnetic moment S<1/2 which decreases with increasing doping
- Ni induces a moment \neq S=1 (Mendels, 1994, 1999; Zagoulaiev, 1995)

Alloul,91; Walstedt,93; Mahajan,94; Williams,95; Ishida,97; JB,97,99; Julien,2000; Itoh,2003; Ouazi, 2004

Nonmagnetic Impurity in Pseudogap regime

Ouazi, 2004

Multi-nuclei quantitative analysis of the induced staggered polarization

- Analogy with spin chains
- Theoreticall justifications :
 - t-J (Poilblanc)
 - RVB (Khaliullin, Gabay, Nagaosa & Lee)

Effect of hole doping on the induced polarization

• persistence of corrélations at optimal doping

NAFL, SCR (Bulut, Ohashi)

Effect of hole doping on the induced polarization

Impurity effects in cuprates

The superconducting state

• Effect on penetration depth :

 λ increases with impurity content,

n_s decreases with impurity content (Bonn, 1993; Bernhard, 1996)

Effect on local Density Of States

Pan, Nature 2000 Hudson, Nature 2001

Effect on magnetic response $\chi''(Q_{AF},\omega)$

Induced polarization by non Magnetic Zn or magnetic Ni

In-plane ¹⁷O NMR in YBaCuO₇ (optimal doping) with Zn at T=10K

Ouazi et al., 2005

Induced polarization by non Magnetic Zn or magnetic Ni

In-plane ¹⁷O NMR in YBaCuO₇ (optimal doping) with Zn at H = 7 Tesla

Induced polarization by non Magnetic Zn or magnetic Ni below T_C

Induced polarization by non Magnetic Zn or magnetic Ni below T_C

Staggered magnetization survives below T_C for Zn and Ni

- Zn : no T-dependence saturation of $\xi \sim 3$ cells
- Ni : Curie-Weiss T-dependence local moment on Ni in the Ni case at least, coexistence between superconductivity and staggered magnetism

Induced polarization by non Magnetic Zn or magnetic Ni below T_C

Ouazi et al., 2005

New low temperature asymetry for Zn, not for Ni

- Local Space-Varying Density of States effect <u>near E_F</u>
- Confirmation of STM measurements, in YBaCuO bulk
- T-dependence : sharp decrease when increasing T

Some models for an impurity in the superconducting state

- BCS + unitary scattering (Hirschfeld, Balatsky, Salkola, Flatté ...)
- RPA (Ohashi)
- t-J + d-wave superconductivity (Wang & Lee)
- Kondo (Povkolnikov, Vojta, Sachdev)

Conclusions

Normal state of cuprates :

- Pseudogap analogous to low dimension insulating spin systems : strong correlations
- Optimal doping : still some correlations
- Quantitative estimate of the polarization : strong constraint for any microscopic model

Superconducting state :

- Many features typical of an anisotropic BCS superconductivity, especially DOS effects
- Zn and Ni Induced moments very similar to normal state
- Coexistence of staggered moments and superconductivity (Ni case)