Charge Instabilities At The Metamagnetic Transition

Carsten Honerkamp
Max Planck Institute for Solid State Research
Stuttgart

1 Layered Sr-Ruthenates

2 Stoner and Pomeranchuk scenarios for the metamagnetic transition

3 2D Hubbard model perspective: mechanisms?

4 Micro phase separation?

cond-mat/0502370
Layered Strontium-Ruthenates $\text{Sr}_{n+1}\text{Ru}_n\text{O}_{3n+1}$
Ruddlesden-Popper Series

Single layer: Sr_2RuO_4
Triplet superconductor, $T_c=1.5\text{K}$,
expanding FS volume: strong increase of χ

Double layer: $\text{Sr}_3\text{Ru}_2\text{O}_7$
close to ferromagnetism,
metamagnetic transition
Electronic Structure: Single Layer Sr_2RuO_4

- 3 t_{2g} bands (d_{xy}, d_{xz}, d_{yz}) cross Fermi level, almost 2D band structure
- LDA, dHvA and ARPES agree on Fermi surfaces
- Van Hove singularity near Fermi level

Damasceelli et al.
Mazin & Singh

van Hove singularities

Sr_2RuO_4 cleaved at 180 K
$T = 10$ K
$hv = 28$ eV

Local-density-approximation band-structure calculation
Doping La\(^{3+}\) For Sr\(^{2+}\): Pushing The FS Closer To Van Hove Points & Ferromagnetism

- \(\text{Sr}_{2-y}\text{La}_y\text{RuO}_4\): \(y > 0\) adds electrons, **expands all Fermi surfaces**
- Spin susceptibility \(\chi\) increases (FM tendencies!)
- FS pushed toward van Hove points
- Multi-layer splittings push FS closer to VH points (Sigrist)

Kikugawa et al., 2004
Double-Layer Sr$_3$Ru$_2$O$_7$: Metamagnetic Transition

- Sharp increase of magnetization in magnetic field around 7.8T

- Feature in resistivity, anomalous T-dependence:
 \[\rho = \rho_0 + A T^x \] with \(x \neq 2 \) in critical region.

Perry et al. PRL 2001
Stoner Picture

- Mean field theory for local repulsion U: metamagnetic transition near van Hove filling

\[f_{\text{HF}}(n, m, T) = f_0(n, m, T) + U n_\uparrow n_\downarrow \]

Minimize $g(T, h, n) = f_{\text{HF}} - h m$

Binz & Sigrist 2003:
New Samples: At Least Two Jumps

- Ultraclean samples ($\rho_0=0.4$ $\mu\Omega$cm) show two or three peaks in low frequency susceptibility χ
- peaks in $\text{Im } \chi$ interpreted as hysteretic signals of two 1st order transitions
Cleaner samples develop a big (×2) resistivity anomaly at the metamagnetic transition.

In anomalous B-field range: no significant increase of ρ with T → elastic scattering.

Domains of something sensitive to impurities?
d-Pomeranchuk Scenario

Proposal: *d*-wave ´Pomeranchuk´Fermi surface deformation

- increases magnetization
- makes domains responsible for resistivity anomaly
- should be sensitive to sample quality

Grigeira et al. 04

Kee & Kim 04
d-Wave FS Deformation In 2D Hubbard Model

- RG in Hubbard model near half filling:
 - tendencies toward d-wave FS deformation (e.g. Halboth&Metzner 2000)
 - typically not strongest instability (CH et al. 2001), but generic tendency
- Effective interaction

\[
H_{dPom}^{\text{eff}} = -g \sum_{\vec{k}, \vec{k}', s, s'} f(\vec{k}, \vec{k}') c_{\vec{k}, s}^+ c_{\vec{k}', s} c_{\vec{k}', s'}^+ c_{\vec{k}, s'}
\]

\[
f(\vec{k}, \vec{k}') = \left(\cos k_x - \cos k_y\right) \times \left(\cos k'_x - \cos k'_y\right)
\]

forward scattering needs this form with \(g > 0\)

→ calculate \(f_{kk'}\) with RG
Effective Interactions From Functional RG

- Momentum-shell RG: integrate out shell around FS at decreasing energy scale Λ
 \[\rightarrow \text{low energy interactions} \]
- **Temperature flow**: follow flow of vertex functions down to low T
 \[\rightarrow \text{effective low-T interactions} \]
- **N-Patch implementation** gives detailed k-dependence of effective interactions $V(k_1,k_2,k_3)$
RG: Triplet Superconductivity Near Ferromagnetism

- Temperature RG flow \textit{p-wave instability near FM regime} at van Hove filling (CH & Salmhofer 01, Katanin 03,04)
Forward Scattering In Hubbard Model

AF side: d-wave o.k.

\[d_k = \cos k_x - \cos k_y \]

attraction!

FM side: ?

no attraction!

Sr\textsubscript{2}RuO\textsubscript{4}
Sr\textsubscript{3}Ru\textsubscript{2}O\textsubscript{7}

- RG finds contradiction: d-wave FS deformations unfavorable (no attractive coupling constant) in FM regime!
- Alternative explanations?
Similarity To Liquid-Gas Transition

Liquid gas transition:
- Jump in entropy S vs. T at T_c
- Also feature in F as function of V
- Regions with negative curvature wrt V
 \rightarrow phase coexistence

Analogue for metamagnetic transition?

\[
S = -\frac{dF}{dT}
\]

\[
p = -\frac{dF}{dV}
\]

\[
M = \frac{dG}{dB}
\]

Isothermal line at T_c

coexistence region

V_c
Unstable Density Regions Near MM Transition

- Gibbs potential $G(T,h,n)$ in Binz-Sigrist mean-field model has negative curvature wrt density n.

\Rightarrow Coulomb-frustrated phase separation?

- Gibbs potential $G(h,n,T)$ in Binz-Sigrist mean-field model has negative curvature wrt density n.

\Rightarrow Coulomb-frustrated phase separation?

(a) Gibbs potential $G(h,n,T)$ in Binz-Sigrist mean-field model has negative curvature wrt density n.

\Rightarrow Coulomb-frustrated phase separation?

- Gibbs potential $G(T,h,n)$ in Binz-Sigrist mean-field model has negative curvature wrt density n.

\Rightarrow Coulomb-frustrated phase separation?

- Gibbs potential $G(h,n,T)$ in Binz-Sigrist mean-field model has negative curvature wrt density n.

\Rightarrow Coulomb-frustrated phase separation?

- Gibbs potential $G(h,n,T)$ in Binz-Sigrist mean-field model has negative curvature wrt density n.

\Rightarrow Coulomb-frustrated phase separation?
Maxwell Destruction Of Magnetization Jump?

- Mixing parameter p from Maxwell construction:

 Density:

 $$n_{\text{tot}} = (1-p) n_<(h) + p n_>(h)$$

 (p varies continuously from 0 to 1 through transition)

 Magnetization:

 $$m_{\text{tot}} = (1-p) m_<(h) + p m_>(h)$$

- Does phase separation wipe out magnetization-step?
Coulomb & Interface Energies

Coulomb energy frustrates phase separation

→ **micro phase separation** on nanoscale

→ **interfaces** between high- and low-density phases cost additional energy G_I

→ not all mixing ratios p energetically favorable, very thin stripes don’t pay

$$G(h,n,T)$$

$p<h$ $p>(h)$

mixing ratio p grows

$n<h$ $p=0$ $n>(h)$ $p=1$
Two Jumps

Increasing h: two jumps
- from 0 to $p_<$ on entry into inhomogeneous phase
- from $p_>$ to 1 on exit

$G(h,n,T)$
h fixed

$p_<(h)$
$p_>(h)$

$n_<(h)$
$p=0$

$n_>(h)$
$p=1$

$G_I(h)$

Grigeira et al, 04
Length Scale Of Domains

• stripes in metals (Lorenzana et al.):
 size of domains \sim screening length \sim lattice distance

$$l_s^2 = \varepsilon_0 / (4\pi e^2 \kappa)$$

$k = \text{compressibility}$

Is our description sensible? BUT:

• only one Fermi surface (of 6) near VH points, other FS are spectators
• mutual screening by other FS reduces effective charge of domains \rightarrow screening length increases

$$l_s^2 = \varepsilon_0 / (4\pi e^2 Z^* \kappa)$$

$Z^* < 1$ charge reduction
Conclusions

• Strontium-Ruthenates are good test case for understanding of correlation effects

• Scenarios for resistivity anomaly at metamagnetic transition
 – Pomeranchuk FS deformation hard to reconcile with FM tendencies and Hubbard-type models
 – MM transition invites micro phase separation, Coulomb+interface energies might create two magnetization jumps
 – Alternative: uncharged Condon domains due to demagnetization (Binz, Sigrist et al.)

Possible experimental test: STM (Cornell group)