Charge Instabilities At The Metamagnetic Transition

Carsten Honerkamp

Max Planck Institute for Solid State Research

Stuttgart

1 Layered Sr-Ruthenates

2 Stoner and Pomeranchuk scenarios for the metamagnetic transition

3 2D Hubbard model perspective: mechanisms?

4 Micro phase separation?

cond-mat/0502370

Layered Strontium-Ruthenates Sr_{n+1}Ru_nO_{3n+1} Ruddlesden-Popper Series

Single layer: Sr_2RuO_4 Triplet superconductor, $T_c=1.5K$, expanding FS volume: strong increase of χ

Double layer: Sr₃Ru₂O₇ close to ferromagnetism, metamagnetic transition

Electronic Structure: Single Layer Sr₂RuO₄

- 3 t_{2g} bands (d_{xy},d_{xz},d_{yz}) cross Fermi level, almost 2D band structure
- LDA, dHvA and ARPES agree on Fermi surfaces
- Van Hove singularity near Fermi level

Doping La³⁺ For Sr²⁺: Pushing The FS Closer To Van Hove Points & Ferromagnetism

- Sr_{2-y}La_yRuO₄: y>0 adds electrons, expands all Fermi surfaces
- Spin susceptibility χ increases (FM tencencies!)
- FS pushed toward van Hove points
- Multi-layer splittings push FS closer to VH points (Sigrist)

Double-Layer Sr₃Ru₂O₇: Metamagnetic Transition

- Sharp increase of magnetization in magnetic field around 7.8T
- Feature in resistivity, anomalous T-dependence: $\rho = \rho_0 + A T^x$ with $x \neq 2$ in critical region.

Stoner Picture

• Mean field theory for local repulsion U: metamagnetic transition near van Hove filling

- Ultraclean samples (ρ_0 =0.4 $\mu\Omega$ cm) show two or three peaks in low frequency susceptibility χ
- peaks in Im χ interpreted as hysteretic signals of two 1st order transitions

Resistivity Anomaly

- Cleaner samples develop big (×2) resistivity anomaly at the metamagnetic transition
- In anomalous B-field range: no significant increase of ρ with T \rightarrow elastic scattering
- Domains of something sensitive to impurities???

d-Pomeranchuk Scenario

Proposal: d-wave 'Pomeranchuk' Fermi surface deformation

- increases magnetization
- makes domains responsible for resistivity anomaly
- should be sensitive to sample quality

d-Wave FS Deformation In 2D Hubbard Model

- RG in Hubbard model near half filling:
 - tendencies toward d-wave FS deformation (e.g. Halboth&Metzner 2000)
 - typically not strongest instability (CH et al. 2001), but generic tendency
- Effective interaction

$$H_{dPom}^{eff.} = -g \sum_{\vec{k}, \vec{k}', s, s'} f(\vec{k}, \vec{k}') c_{\vec{k}, s}^{+} c_{\vec{k}, s} c_{\vec{k}', s'}^{+} c_{\vec{k}', s'}$$

forward scattering needs this form with g>0 \rightarrow calculate f_{kk} with RG

Effective Interactions From Functional RG

Momentum-shell RG: integrate out shell around FS at decreasing energy scale Λ

 \rightarrow low energy interactions

Temperature flow: follow flow of vertex functions down to low

 \rightarrow effective low-T interactions

RG: Triplet Superconductivity Near Ferromagnetism

• Temperature RG flow *p*-wave instability near FM regime at van Hove filling (CH & Salmhofer 01, Katanin 03,04)

Forward Scattering In Hubbard Model

- RG finds contradiction: d-wave FS deformations unfavorable (no attractive coupling constant) in FM regime!
- Alternative explanations?

Similarity To Liquid-Gas Transition

Liquid gas transition:

- Jump in entropy S vs. T at T_c
- Also feature in F as function of V

Regions with negative curvature wrt
 V → phase coexistence

Analogue for metamagnetic transition?

Unstable Density Regions Near MM Transition

- Gibbs potential G(T,h,n) in Binz-Sigrist mean-field model has negative curvature wrt density n
- \rightarrow Coulomb-frustrated phase separation?

Maxwell Destruction Of Magnetization Jump?

• Does phase separation wipe out magnetization-step?

Coulomb & Interface Energies

Coulomb energy frustrates phase separation

- \rightarrow micro phase separation on nanoscale
- \rightarrow interfaces between high- and low-density phases cost additional energy G_{I}
- \rightarrow not all mixing ratios p energtically favorable, very thin stripes don't pay

Two Jumps

Length Scale Of Domains

• stripes in metals (Lorenzana et al.):

size of domains ~ screening length ~ lattice distance

$$l_s^2 = \mathcal{E}_0 / (4\pi e^2 \kappa)$$
 $\kappa = \text{compressibility}$

Is our description sensible? BUT:

- only one Fermi surface (of 6) near VH points, other FS are spectators
- mutual screening by other FS reduces effective charge of domains → screening length increases

$$l_s^2 = \mathcal{E}_0 / (4\pi e^2 Z^* \kappa)$$
 $Z^* < 1$ charge reduction

- Strontium-Ruthenates are good test case for understanding of correlation effects
- Scenarios for resistivity anomaly at metamagnetic transition
 - Pomeranchuk FS deformation hard to reconcile with FM tendencies and Hubbrd-type models
 - MM transition invites micro phase separation,
 Coulomb+interface energies might create two magnetization jumps
 - Alternative: uncharged Condon domains due to demagnetization (Binz, Sigrist et al.)

Possible experimental test: STM (Cornell group)