Growth

Reactive (NH3)molecular-beam epitaxy on 6H-SiC(0001) Substrate with Ts = 810° C

Gd corporation varies linearly with J_{Gd}/J_g Electrically highly resistive

Magnetic Hysteresis

Sample C ($N_{Gd} \sim 6 \times 10^{16} \text{ cm}^{-3}$)

Clear hysteresis at 2 K and 300 K Magnetization saturates at high fields U Ferromagnetism

Colossal Magnetic Moments

Average moment per Gd atom \Rightarrow as high as 4000 μ_B Fit returns 2 K: $p_m = 1.1 \times 10^{-3} \mu_B$, r = 33 nm 300 K: $p_m = 8.4 \times 10^{-4} \mu_B$, r = 25 nm

Magnetic Results: Sample B

Motivation

Search for ferromagnetic (FM) semiconductor with $T_c > 300$ K TM doped wide band-gap semiconductors seem to be good candidates

Previous results from (Ga,Mn)N

Homogeneous layer exhibits spin-glass behavior Ferromagnetism with $T_c > 300$ K is caused by precipitates (clusters)¹ Electrically resistive

Previous results from (Ga,Gd)N

Found to be FM with $T_c > 300 \text{ K}^2$

Advantages of Gd

Magnetic moment $8\mu_B$, larger than that of any TM atom Only rare earth element with both 4f and 5d orbitals partially filled

[1] S. Dhar et al., Appl. Phys. Lett., 82, 2077 (2003)
[2] N. Teraguchi et al., Sol. State. Commun., 122, 651 (2002)

Empirical Model

Origin of colossal moment: Gd atoms polarize the matrix

$$p_e = p_{Gd} + p_m v N_o/N_{Gd}; v = 1-exp(-v N_{Gd})$$

Expected \Rightarrow p_e decreases as N_{Gd} is increased \Leftarrow Experimentally observed

Ferromagnetism: overlap of spheres ferromagnetic coupling

Expected \Rightarrow T_c increases with N_{Gd} \Leftarrow Experimentally observed

Magneto-Photoluminescence

No magnetic field: PL spectra for all samples dominated by (D°,X) transition \Rightarrow characteristic for GaN

B = 10 T in Faraday geometry (**B** | | c)

