Superconductivity and Magnetism in Ruthenates

Nano'05

M. Sigrist, ETH Zurich

Outline:

1. Spin-triplet superconductivity in Sr₂RuO₄ special topics: inhomogeneous 3-Kelvin phase

2. Metamagnetism in Sr₃Ru₂O7

special topics: Condon domain formation

Theory:

T.M. Rice	M. Matsumoto	N. Nagaosa
D.F. Agterberg	K.K. Ng	S. Murakam
M.E. Zhitomirsky	J. Goryo	T. Morinari
C. Honerkamp	H. Kusunose	M. Takigawa
H. Monien	T. Morinari	K. Machida
A. Furusaki	Y. Okuno	T. Nomura
B. Binz	B. Braun	N. Hayashi
K. Wakabayashi	F. Loder	B. Gut

Experiment:

Y. Maeno	X. Mao	S. Nakatsuji
A. Mackenzie	H. Yaguchi	S. NishiZaki
G. Luke	K. Ishida	S. Ikeda
T. Uemura	C. Bergemann	M. Wada
Y. Liu	M. Braden	S. Deguchi
A.C. Mota	E. Dumont	E. Forgan
J. Kirtley	M. Tanatar	Y. Matsuda

Sr₂RuO₄ - strongly correlated 2D Fermi liquid

Crystal structure: layered perovskite analog High-T_c cuprates

Quasi-two-dimensional Fermi liquid

3 "cylindrical" bands

 $3d-t_{2g}$ - orbitals of Ru

de Haas - van Alphen

Bergemann, Mackenzie et al.

Correlation effects mass enhancement susceptibility enhancement

 $\frac{m^*/m_0 \approx 4}{\chi^*/\chi_0 \approx 5-8}$

Superconductivity: $T_c = 1.5 K$

Maeno, Bednorz et al, (1994)

Analogy to ³He

p-wave spin-triplet pairing

³He - strongly correlated Fermi liquid

effective mass:

spin susceptibility:

$$m^*/m \approx 4$$

 $\chi^*/\chi \approx 9$

Pair wavefunction

strong correlation effects

Superfluidity:

$F_{ss'}(\vec{k}) = \langle c_{-\vec{k}s} c_{\vec{k}s'} \rangle = \begin{pmatrix} F_{\uparrow\uparrow}(\vec{k}) & F_{\uparrow\downarrow}(\vec{k}) \\ F_{\downarrow\uparrow}(\vec{k}) & F_{\downarrow\downarrow}(\vec{k}) \end{pmatrix}$ $= \begin{pmatrix} -d_x(\vec{k}) + id_y(\vec{k}) & d_z(\vec{k}) \\ d_z(\vec{k}) & d_x(\vec{k}) + id_y(\vec{k}) \end{pmatrix}$ A-phase $\vec{d}(\vec{k}) = \hat{z}(k_x \pm ik_y)$ **B**-phase $\vec{d}(\vec{k}) = \hat{x}k_x + \hat{y}k_y + \hat{z}k_z$

Superconducting phase

Fundamental p-wave pairing states:

Tetragonal crystal symmetry D_{4h}

Spin-orbit coupling

$$\begin{array}{c|cccc}
\Gamma & \vec{d} \\
\hline A_{1u} & \vec{d} = \hat{x}k_x + \hat{y}k_y \\
\hline A_{2u} & \vec{d} = \hat{x}k_y - \hat{y}k_x \\
\hline B_{1u} & \vec{d} = \hat{x}k_x - \hat{y}k_y \\
\hline B_{2u} & \vec{d} = \hat{x}k_y + \hat{y}k_x \\
\hline \hline E_u & \vec{d} = \hat{z}(k_x \pm ik_y) \\
\end{array}$$
Brownson

Quasiparticle gap: nodeless $\Delta(ec{k}) = |ec{d}(ec{k})| = |ec{k}|$

Experimental evidence:

sample purity essential spin polarizable intrinsic magnetism flux line lattice phase sensitive tests

$$\vec{d}(\vec{k}) = \hat{z} \quad (k_x \pm ik_y)$$

$$\frac{1}{\sqrt{2}} \{|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle\} \quad L_z = \pm 1$$

$$\frac{\text{degeneracy: } 2}{\text{chirality: orbital moment}}$$

$$\text{"Chiral p-wave state"}$$

Phase sensitive tests

Quasiparticle tunneling: observation of surface boundstates subgap features in I-V-characteristics 1.26 K Point contact spectroscopy 1.01 K Laube, Goll, von Lohneysen et al. dV/dI Sr₂RuO₄ 0.41 k 0.3 K $D_0 = 0.001$ λ=24 SQUID experiments: -1 -2 0 V(mV)

design following Geshkenbein, Larkin and Barone

2

Phase sensitive tests

Electronic structure of 4d-t_{2q}-orbitals

Degeneracy of p-wave state in 2D

analog to superfluid ³He films

$$\begin{array}{c|c}
\Gamma & \vec{d} \\
\hline A_{1u} & \vec{d} = \hat{x}k_x + \hat{y}k_y \\
\hline A_{2u} & \vec{d} = \hat{x}k_y - \hat{y}k_x \\
\hline B_{1u} & \vec{d} = \hat{x}k_x - \hat{y}k_y \\
\hline B_{2u} & \vec{d} = \hat{x}k_y + \hat{y}k_x \\
\hline E_u & \vec{d} = \hat{z}(k_x \pm ik_y)
\end{array}$$

quasiparticle gap identical:

$$\left|\vec{d}\right| = \sqrt{k_x^2 + k_y^2}$$

weak-coupling condensation energy degenerate

lift of degeneracy by spin-orbit coupling

$$H_{so} = i\alpha \sum_{\vec{k},s,s'} \sum_{l,m,n} \varepsilon_{lmn} \sigma_{ss'}^{l} c_{\vec{k}s,m}^{+} c_{\vec{k}s',n}$$

$$\alpha \approx 10 - 20\%$$
 band width

Degeneracy of p-wave state in 2D

analog to superfluid ³He films

Ng & MS, Yanase & Ogata, Eremin et al. $A_{1u} \quad \vec{d} = \hat{x}k_x + \hat{y}k_y$ $A_{2u} \quad \vec{d} = \hat{x}k_y - \hat{y}k_x$ $B_{1u} \quad \vec{d} = \hat{x}k_x - \hat{y}k_y$ $B_{2u} \quad \vec{d} = \hat{x}k_y + \hat{y}k_x$ $C_{u} \quad \vec{d} = \hat{z}(k_x \pm ik_y)$ FM spin fluctuations inplane polarized spin dependent interband Cooper pair scattering Superconductivity dominant in quasiparticle gap identical: $\alpha\beta$ -band $\left| \vec{d} \right| = \sqrt{k_x^2 + k_y^2}$ weak-coupling γ -band condensation energy degenerate

lift of degeneracy by spin-orbit coupling

Orbital dependent superconductivity Spin fluctuation exchange involved in pairing mechanism?

Imai et al. NMR-analysis: Mukuda et al. static spin susceptibility K.K. Ng $\alpha\beta$ -band: Mazin & Singh AF fluctuations γ -band: FM fluctuations Spin triplet pairing Neutron 450 - T=10.4 K favored on T=295 suppressed on 400 scattering Mn=4 250 350 -band $\alpha\beta$ -bands 200 300 Sidis, Braden et al. ntensity

(1.3,K,0)

Spin anisotropy

spin singlet pairing → Yosida behavior of spin susceptibility

pair breaking by spin polarization

spin triplet pairing

no pair breaking

for equal spin pairing

 T_c

$$\chi = \text{const.}$$
 for $\vec{d}(\vec{k}) \cdot \vec{H} = 0$

Spin anisotropy

¹⁷O-Knight shift

consistent with

$$\vec{d} = \hat{z} \left(k_x \pm i k_y \right)$$

¹⁰¹Ru-Knight shift

Gap structure and Low-temperature thermodynamics Gap structure and low-temperature thermodynamics

Observed "powerlaws"

Ishida et al.

10

consistent with line nodes

Multiband effects

Three bands:

Multi-band superconductivity:

active intrinsically superconducting bands

passive bands with induced superconductivity 157

Agterberg, Rice& MS

Multiband effects

Three bands:

Zhitomirsky & Rice (2001)

Gap anisotropy - specific heat

Vekhter; Maki, Won, Thalmeier. Dahm; Miranovi, Machida,

Basic gap nodes

Gap structure within the Brillouin zone:

Perodicity:
$$\Delta_{\vec{k}} = \Delta_{\vec{k}+\vec{G}}$$
 reciprocial lattice vector \vec{G}
Zeros: $\Delta_{-\vec{k}} = -\Delta_{\vec{k}} = \Delta_{-\vec{k}+\vec{G}}$ odd parity
 $\Delta_{\vec{k}} = 0$ for $\vec{k} = -\vec{k} + \vec{G} \implies \vec{k} = \frac{\vec{G}}{2}$
Brillouin zone
mandatory zeros
on the BZ boundary k_x $|\Delta_{\vec{k}}|^2 = |\vec{d}(\vec{k})|^2$

Gap anisotropy - summary

Frustrated inhomogeneous phase

3-Kelvin phase

Sr₂RuO₄ with excess Ru-metal inclusions

 $\mu\text{m}\text{-size}$ Ru-inclusions

Maeno et al (1997)

Onset of inhomogeneous superconductivity close to 3 K "3-Kelvin phase"

Ru-metal: $T_c = 0.5 \text{ K}$

Nucleation of superconductivity on the interface between Ru and Sr₂RuO₄?

3-Kelvin phase - nucleation at the interface

nucleation of p-wave state parallel to interface

better concentrated in beneficial region

time reversal invariant

symmetry breaking transition

Upper critical field H_{c2}

Correction: shrinking cyclotron radius

$$\eta_{\parallel} = \eta_0 e^{-|x|/\xi} e^{-\alpha x^2}$$

Matsumoto, Bellardinelli, MS

Note: in bulk

 $H_{c2} \propto (T_c - T)$

Upper critical field H_{c2}

Field parallel to z-axis

Coupling to the magnetic moment of the Cooper pairs

- \longrightarrow mixing of p_x and p_y (chiral phase)
- \rightarrow enhancement of H_{c2}

Capillary and frustration effect

Lowest energy with same phase Josephson coupling

Frustration due to π -links

Release of frustration by spontaneous currents possibly visible in ac-susceptibility

Interface and topological defects

interface nucleate

bulk phase

winding of phase

no winding

change of topology between inhomogeneous and bulk phase

Signature of frustration effects

Critical current in 3-Kelvin phase

Signature of unconventional pairing

break junction along c-axis

Mao, Liu et al, (2001)

quasiparticle tunneling

zero-bias anomaly

Signature of unconventional pairing

Contacts to specific Ru-inclusions

Metamagnetism in Sr₃Ru₂O₇

Ruddelson-Popper series: $Sr_{n+1}Ru_nO_{3n+1}$

Ferromagnetism

Sr₃Ru₂O₇

Metamagnetic transition in Sr₃Ru₂O₇

Quantum critical behavior at the metamagnetic transition

Perry et al., PRL 86, 2661 (2001)

Grigera et al., Science, 294, 329 (2001)

Fermi surface topology change

Metamagnetic transition in ultrapure samples

Perry et al. Phys. Rev. Lett. (2004)

new intermediate phase

Grigera et al., Science (2004)

- Pomeranchuk (Fermi surface) instability ? Schofield et al.
- orbital charge redistribution? Honerkamp

Condon domains

demagnetization effects

Condon domains

demagnetization effects

Possible phase separation in triple-layer Sr₄Ru₃O₁₀

Discontinuous metamagnetic transition

Cao et al., PRB (2003)

Mao et al. cond-mat (2005)

• ferromagnetism
$$H \parallel c$$

 $T_c = 105 K$

1st order transition *H* || *ab* Hysteresis in magnetization

Domain formation ! ?

Visible in transport?

Possible phase separation in triple-layer Sr₄Ru₃O₁₀

Discontinuous metamagnetic transition

Inplane field - inplane resistance

possibly effects of domains

$Sr_{n+1}Ru_nO_{3n+1}$ - phase diagram

Conclusion

Superconducting single layer compound: Sr₂RuO₄

- Unconventional superconductivity out of strongly correlated Fermi liquid
- Understanding of microscopic mechanism still limited
- Phenomenological aspects rather well understood

Exemplary case with many complications, but also many opportunities

Magnetism in multi-layer compounds:

 $Sr_{n+1}Ru_nO_{3n+1}$

- Itinerant metamagnetism in bilayer compound with puzzling low-temperature phase
- Multi-layer compounds map out a phase diagram: physics of 1st-order QPT
- We do not see yet all the complications here