

Carsten Timm Free University Berlin

In collaboration with: M.E. Raikh University of Utah

F. von Oppen Sree University Berlin

C.T., M.E.R. & F.v.O., PRL 94, 036602 (2005)

1 NANO05 Dresden

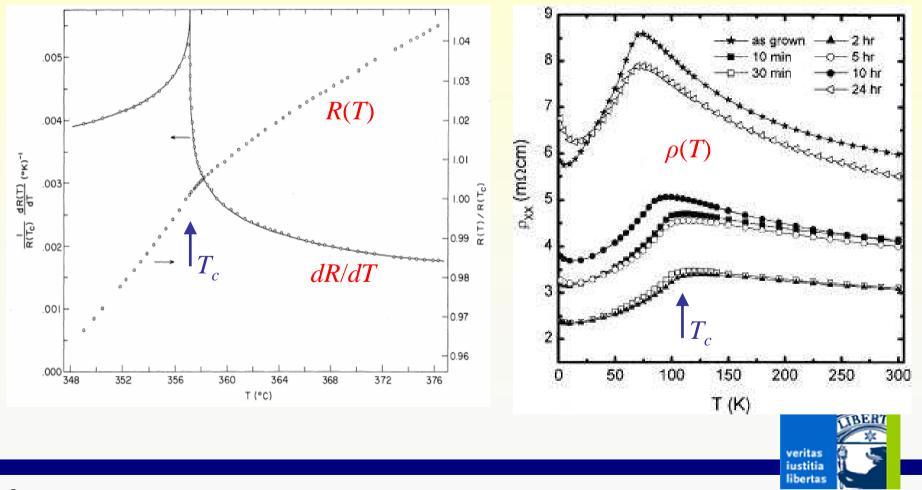
Resistive anomaly: Experiments

Zumsteg & Parks, PRL 24, 520 (1970):

Ni

Potashnik et al., APL 79, 1495 (2001):

(Ga,Mn)As



Resistive anomaly: Theory

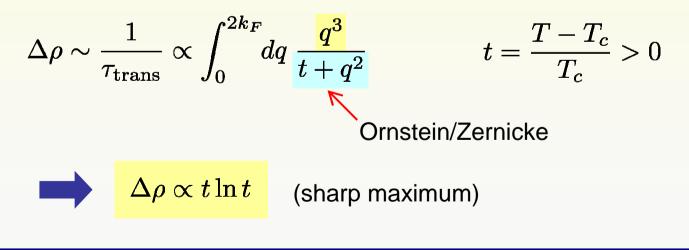
(for paramagnetic regime, $T > T_c$)

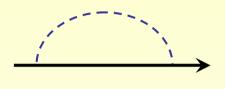
de Gennes and Friedel, J. Phys. Chem. Solids 4, 71 (1958):

- scattering from magnetic fluctuations
- close to T_c : critical slowing down \rightarrow static, elastic

Approach equivalent to:

- perturbation theory, similar to inverse quasiparticle lifetime, but transport rate involves factor 1 cos θ $\propto q^2$
- anomaly from small momentum transfers q





$$\frac{1}{\tau_{qp}} = -2 \operatorname{Im} \Sigma^R(\mathbf{k}_F, 0)$$

Fisher and Langer, PRL 20, 665 (1968):

disorder damping for large length scales \leftrightarrow small *q*: electronic Green function decays exponentially on scale *l* (mean free path)

- no de Gennes-Friedel singularity from small q
- weak singularity from large $q \approx 2k_F$, have to go beyond Ornstein/Zernicke:

$$\Delta \rho \sim \frac{1}{\tau_{\rm trans}} \propto {\rm const} + t^{1-\alpha}$$

α: **small** anomalous specific-heat exponent

Equivalent to a Boltzmann equation approach, disorder and magnetic scattering treated on equal footing

Problem:

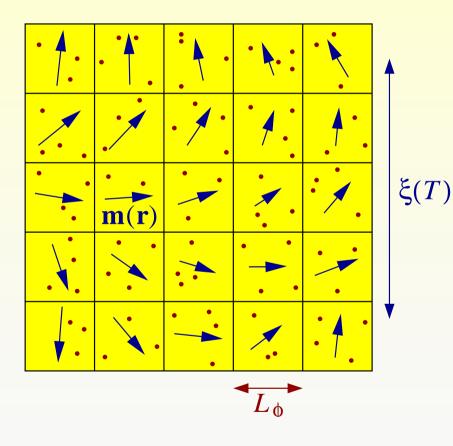
fails for magnetic correlation lengths $\xi(T) \gg l$ (mean free path),

magnetization variations are explored by diffusive carriers

Beyond the Boltzmann approach:

(1) Description of transport on large length scales $r \gg L_{\phi}$ (phase coherence length):

3D resistor network



- magnetization ~ constant in cells
- conductivity of network:

$$\sigma_{
m eff} = \langle \sigma
angle - rac{\langle \delta \sigma({f r})^2
angle}{3 \langle \sigma
angle}$$

$$\delta\sigma(\mathbf{r}) = \delta g(\mathbf{r}, E_F, \mathbf{m}(\mathbf{r}))/L_{\phi}$$

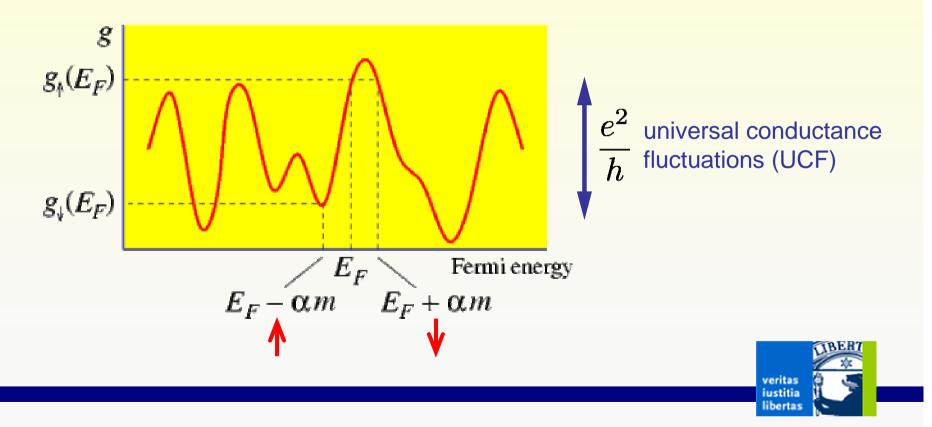
- spatial average
- large system: equivalent to average over
 - quenched disorder
 - magnetization (thermal)

(2) Two spin subbands: \uparrow ,

$$\langle \delta g^2 \rangle = \underbrace{\langle \delta g_{\uparrow} \delta g_{\uparrow} \rangle}_{\mathsf{UCF}} + \underbrace{\langle \delta g_{\uparrow} \delta g_{\downarrow} \rangle + \langle \delta g_{\downarrow} \delta g_{\uparrow} \rangle}_{\mathsf{UCF}} + \underbrace{\langle \delta g_{\downarrow} \delta g_{\downarrow} \rangle}_{\mathsf{UCF}}$$

Correlation function $\langle \delta g_{\uparrow} \delta g_{\downarrow} \rangle$:

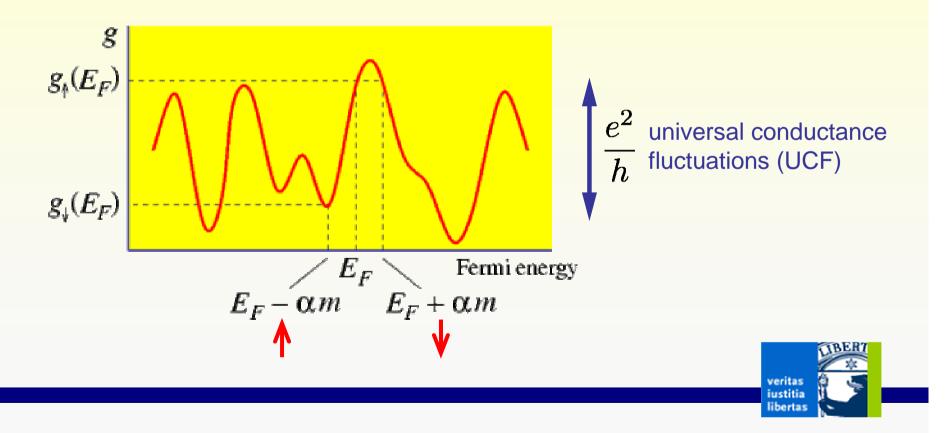
spin 1, carriers have different Fermi energies but see same disorder



 $\langle \delta g_{\uparrow} \delta g_{\downarrow} \rangle$ is a scaling function of $x = \text{eff. Zeeman energy} \times \text{diffusion time}$ (Stone 1985, Altshuler 1985, Lee and Stone 1985)

$$\langle \delta g_{\uparrow} \delta g_{\downarrow} \rangle \propto \left\{ egin{array}{cc} 1 - C_1 \, x^2 & {
m for} \ x \ll 1 \ C_2 \, x^{-1/2} & {
m for} \ x \gg 1 \end{array}
ight.$$

(correlations decrease with increasing Zeeman energy)



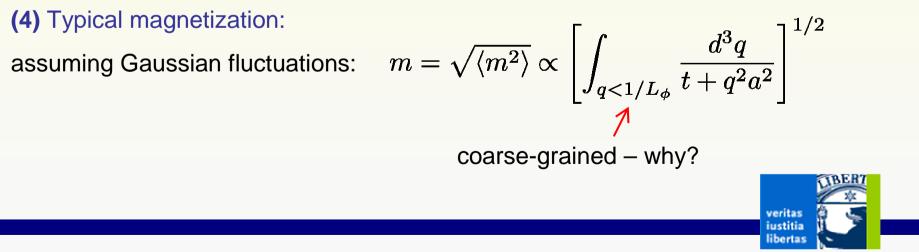
 $\langle \delta g_{\uparrow} \delta g_{\downarrow} \rangle$ is a scaling function of $x = \text{eff. Zeeman energy} \times \text{diffusion time}$ (Stone 1985, Altshuler 1985, Lee and Stone 1985)

$$\langle \delta g_{\uparrow} \delta g_{\downarrow} \rangle \propto \left\{ egin{array}{cc} 1 - C_1 \, x^2 & {
m for} \ x \ll 1 \ C_2 \, x^{-1/2} & {
m for} \ x \gg 1 \end{array}
ight.$$

(correlations decrease with increasing Zeeman energy)

(3) With spin-orbit coupling (realistic case):

 $\langle \delta g^2 \rangle$ is a scaling function H(y) of y = eff. Zeeman energy \times spin-orbit time, increases by factor of 2 in strong eff. Zeeman field



Result for Gaussian fluctuations:

$$\Delta\rho\propto-\frac{1}{\xi(T)}\propto-\sqrt{t}$$

Beyond Gaussian fluctuations:

 $\Delta
ho \propto -t^{
u(1+\eta)}$

stronger singularity...

...than in Fisher/Langer and de Gennes/Friedel theories

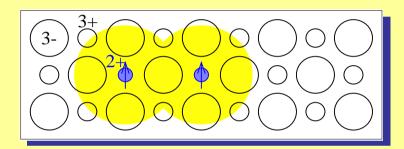
Condition:

Transport is disorder-dominated around T_c (low T_c , strong disorder)

Diluted magnetic semiconductors?

specifically Mn-doped III-V compounds (GaAs, InAs, InSb,...)

 Mn^{2+} replaces 3+ cation, introduces a hole and a local spin 5/2



- strong Coulomb disorder
- T_c can be low (InSb)

Theory predicts maximum of ρ at T_c

Critical behavior sits on top of high, broad peak (de Gennes/Friedel) due to strong spin scattering

Conclusions

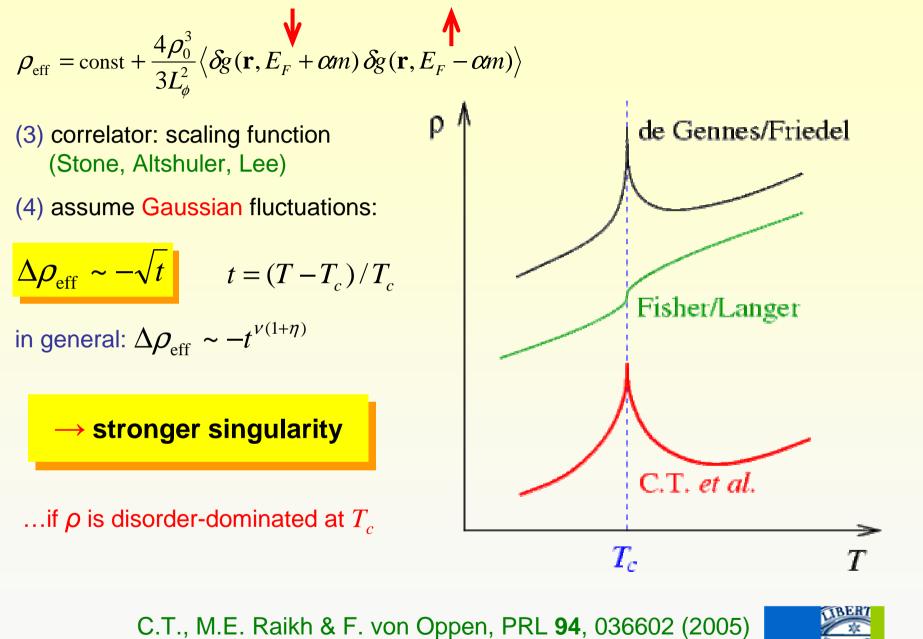
If $\rho(T)$ close to T_c is dominated by disorder, not phonons:

- much stronger singularity then found in clean ferromagnets
- possible applications to bad metallic ferromagnets and diluted magnetic semiconductors

C.T., M.E. Raikh, and F. von Oppen, PRL 94, 036602 (2005)

Deutsche Forschungsgemeinschaft DFG

Deutscher Akademischer Austausch Dienst German Academic Exchange Service



Ferromagnetic phase:

- $\langle \sigma \rangle$ obtains magnetization dependence, expect $\Delta \langle \sigma \rangle \propto \langle m \rangle^2$: harmless
- contribution from $\langle g_{\uparrow}g_{\downarrow}\rangle$:
 - average magnetization $\langle m \rangle$ gives $\Delta \rho \propto H(y)$ with $y \propto \langle m \rangle$: harmless
 - fluctuations give same power as in the paramagnetic phase as long as $\langle m^2\rangle\gg\langle m\rangle^2$

