Nano boubles and more ...

Jan Zaanen

Universiteit Leiden

Instituut-Lorentz for theoretical physics

The Hitchhikers Guide to the Scientific Universe

\$14.99 Amazon.com

Working title: 'no strings attached'

Nano boubles

Boubles =

Nano = This Meeting ??

Year Round X-mas Shops

Nano boubles

Nano HOAX

6

Nanobot =

Mechanical machine

Mechanical machines need **RIGIDITY**

RIGIDITY = EMERGENT = absent on nanoscale

Cash YOUR NEW WORK ON GLOBAL WARMING SEEMS TO HAVE GONE DOWN WELL WITH THE TABLOIDS TWO

Correlation boubles ...

Freshly tenured ...

Meaningful meeting

Compliments to organizers:

Interdisciplinary with focus and a good taste!

Compliments to the speakers:

Review order well executed!

Cross fertilization: semiconductors to correlated

Bossing experimentalists around: these semiconductor devices are ingenious!! Pushing domain walls around (Ohno)

Spin transport (spin Hall, Schliemann) -- somehow great potential in correlated ...

Personal highlight: Mannhart, Okamoto !

Devices <=> interfaces: lots of correlated life!!

Cross fertilization: correlated to semiconductors

Inhomogeneity !!

Theorists be aware, it is elusive ...Go out and have a look: STM (Koenraad, Yazdani)Good or bad for the holy grail (high Tc)??Joe Moore: Tc can go up by having high Tc island in a low Tc sea

Resistance maximum at Tc:

Lesson of manganites: big peak requires large scale electronic reorganization.

More resistance maximum

Where are the polarons in GaMnAs ???

Zarand: strong disorder, large scale stuff, but Anderson localization at high T ??

Manganites: low T degenerate Fermi-liquid to high T classical (polaron) liquid

Easily picked up by Thermopower (Palstra et al 1995): S(classical liquid) = 1000 * S(Fermi liquid)

Competing orders

First order transition + Coulomb frustration + more difficult stuff ==> (dynamical) inhomogeniety + disorder ==> glassiness

2DEG-MIT (Fogler): Wigner X-tal vs. Fermi-liquid

Manganites (Argyriou, Perroni, ...): Polaron liquid vs. Charge order vs. FM Fermi-liquid

Cuprates (Lee, Davis,Gorkov,Blumberg, ...): superconductivity vs. Fermi-liquid vs. plain antiferromagnetism vs. stripe order vs. flux phases (??) vs. real d-density wave vs. topological order A vs topological order B vs

The 2DEG

The most basic: Coulomb, kinetic energy and a bit of dirt.

Why is this so underfunded?

Experimentally rather inaccessible (transport), however notice the compressibility scans (Fogler) ..

Manganites

Mature subject: basic rules are under controll

'Critical' electron-phonon interaction + double exchange + 'stripy' charge ordering physics

Surprises still happening, highlight Argyriou: Classical liquid --> glass --> crystal (stripes) --> FM fermi liquid

Ilya Vekhter: competing orders --> spontaneous glassiness, is this the clue??

This was actually a pretty good high Tc meeting ...

Focus on disorder, timely

The Alloul paradigm (Bobroff, Ruillier-Albenque, Eisaki, in a way Broun, Gorkov):

Dirt is important

For low Tc (214) and (because of ?) stripesFor phase fluctuations/Nernst effectTo figure out spin-charge separation (Zn vs Ni impurities).Out of plane (intrinsic) disorder is a killer

Quantum mayonaise

Davis: anti-correlation with dopants, inhomogeneity in gap maps, not in charge density

Nunner: Gap-map inhomogeneity due to disorderly pairing interaction!

Makes Devereaux happy: Eisaki's offplane dirt talks to Thom's phonons

Quantum mayonaise cont.

If large gaps = pseudogaps are due to strong pairs If pseudogap blobs are bad (super)conductors These have to be blobs of orderly (stripy) charge

Phase dynamics at work!

Small pairs have a small kinetic energy and a large charging energy ==> phase disorders, charge orders

If so: Room temperature superconductivity would exist were it not that stripes spoil the fun ...

A critical note

'Spectroscopy from mixed-phase models' (Mayr, Atkinson)

Use mean-field potentials derived from interesting static textures to reach conclusions regarding photoemission etc. spectra

In cuprates: not quite right!

Reason: hbar is big, auxiliary fields time dependent as hell, especially so at high energies!

Theorist' bouble, by me ...

Black lines: charge stripes as serious quantum strings (lines of tight binding particles) Red, yellow: serious quantum Heisenberg spins

Movie: imaginary time cinema Timeslices of quantum Monte Carlo simulations

Euclidean Movie: order out of disorder in stripe land

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

That is it

Looking forward seeing you again!

Empty slide

