S4.4 Transition from Mott Insulator to Superconductor in metal-cluster compounds Ga(Ta,Nb)$_4$(Se)$_8$

M. M. Abd-Elmeguid1, B. Ni1, R. Pocha2, D. Johrendt2, X. Wang3, K. Syassen3

1II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany
2Department Chemie, Ludwig-Maximilians-Universität-München, 81377 München, Germany
3Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany

We have investigated the effect of pressure on the electronic, structural and dynamical properties of semiconducting chalcogenides GaNb$_4$Se$_8$ and GaTa$_4$Se$_8$ which crystallize in the fcc GaMo$_6$S$_4$-type structure using electrical resistance, x-ray diffraction and Raman spectroscopy, respectively. The interesting aspect to study these compounds is that the conduction occurs through hopping of the charge carriers between well separated (> 4 Å) tetrahedral (Ta,Nb)$_4$-metal clusters which leads to strong correlation effects between localized electronic states. Under high pressure, we find in both compounds a metallic conductivity and a pressure-induced superconductivity at a critical pressure (p_c): for GaNb$_4$Se$_8$ ($T_c = 4$ K at $p_c = 13$ GPa) and GaTa$_4$Se$_8$ ($T_c = 5.8$ K at $p_c = 11.5$ GPa). High pressure single crystal x-ray diffraction and Raman measurements on GaTa$_4$Se$_8$ show that the onset of superconductivity is connected with a strong reduction of the octahedral distortion and a simultaneous softening of the phonon associated with Ta-Se bond which exhibits a finite value above p_c.