S4.4 Transition from Mott Insulator to Superconductor in metalcluster compounds Ga(Ta,Nb)₄(Se)₈

M. M. Abd-Elmeguid¹, B. Ni¹, R. Pocha², D. Johrendt², X. Wang³, K. Syassen³

We have investigated the effect of pressure on the electronic, structural and dynamical properties of semiconducting chalcogenides GaNb4Se8 and GaTa4Se8 which crystallize in the fcc GaMo₆S₄-type structure using electrical resistance, x-ray diffraction and Raman spectroscopy, respectively. The interesting aspect to study these compounds is that the conduction occurs through hopping of the charge carriers between well separated (> 4 Å) tetrahedral (Ta,Nb)₄-metal clusters which leads to strong correlation effects between localized electronic states. Under high pressure, we find in both compounds a metallic conductivity and a pressure-induced superconductivity at a critical pressure (pc): for GaNb₄Se₈ ($T_c = 4$ K at $p_c = 13$ GPa) and GaTa₄Se₈ ($T_c = 5.8$ K at $p_c = 11.5$ GPa). High pressure single crystal x-ray diffraction and Raman measurements on GaTa4Se8 show that the onset of superconductivity is connected with a strong reduction of the octahedral distortion and a simultaneous softening of the phonon associated with Ta-Se bond which exhibits a finite value above p_c .

¹ II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany ² Department Chemie, Ludwig-Maximilians-Universität-München, 81377 München, Germany

³ Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany