Abstract: NOVMAT04, Dresden

Superconductivity of the Heavy Fermion Compounds UPd₂Al₃ and UNi₂Al₃

M. Jourdan, Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany

The isostructural (hexagonal) Heavy Fermion compounds UPd₂Al₃ and UNi₂Al₃ both exhibit the coexistence of unconventional superconductivity and magnetic order at low temperatures. However, they display important differences concerning magnetic structure and the possibility of spin triplet pairing key to the understanding of the interplay between magnetism und superconductivity.

Recently we were able to prepare epitaxial superconducting UPd_2Al_3 and UNi_2Al_3 thin films which grow with the crystallographic a-axis perpendicular to the substrate. These samples allow special transport measurements and the preparation of tunneling junctions for the investigation of the superconducting order parameter. Evidence for multiband superconductivity in UNi_2Al_3 will be reported [1] based on the observation of a directional dependent critical temperature which was not observed investigating UPd_2Al_3 samples. First results of tunneling spectroscopy on UNi_2Al_3 will be presented and compared with our previous experiments on c-axis oriented UPd_2Al_3 thin films.

[1] M. Jourdan et al., Phys. Rev. Lett. 93, 097001 (2004)