Stochastic Lattice Boltzmann and its Coupling to Soft Matter Systems

Burkhard Dünweg

Max Planck Institute for Polymer Research Ackermannweg 10, D-55128 Mainz, Germany

duenweg@mpip-mainz.mpg.de

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Hydrodynamic interactions

Navier–Stokes equation (Green's function) solvent viscosity η

$$\langle \Delta \vec{r_i} \otimes \Delta \vec{r_j} \rangle = 2 \overleftrightarrow{D}_{ij} \Delta t$$

Oseen tensor:

$$\stackrel{\leftrightarrow}{D}_{ij} = k_B T \stackrel{\leftrightarrow}{\mu}_{ij} = \frac{k_B T}{8\pi\eta} \frac{1}{|\vec{r}_i - \vec{r}_j|} \left(\stackrel{\leftrightarrow}{1} + \hat{r}_{ij} \otimes \hat{r}_{ij}\right)$$

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions

Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Brownian Dynamics (BD)

$$ec{r}_i(t+\Delta t) = ec{r}_i(t) + \Delta t \sum_j \stackrel{\leftrightarrow}{\mu}_{ij} ec{F}_j(t) + \Delta ec{r}_i$$
 $\langle \Delta ec{r}_i \otimes \Delta ec{r}_j
angle = 2 \stackrel{\leftrightarrow}{D}_{ij} \Delta t$

- For many Brownian particles, the correlation matrix becomes huge and very unwieldy!
- Exact calculation of stochastic term via Cholesky decomposition: O(N³)
- Approximate solution via matrix Chebyshev expansion: O(N^{2.25})
- "P³M"-like methods (Banchio & Brady): O(N^{1.25} In N) (complicated, not considered here)
- ► ⇒ In many cases, explicit momentum transport is desired (strictly O(N)!)

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions

Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Brownian Dynamics vs. explicit solvent (ES)

- ► Schmidt number Sc = ν/D (diffusive momentum transport vs. diffusive mass transport)
- Mach number Ma = v/c (flow velocity vs. speed of sound; importance of fluid compressibility)
- Reynolds number Re = vL/ν (convective vs. diffusive momentum transport)
- "Boltzmann number" Bo: Δx/x (thermal fluctuation vs. mean value, on the scale of an effective degree of freedom — depends on the degree of coarse-graining!)
 - Particle methods: Bo = O(1)
 - BD, discretized field theories: Bo freely adjustable!

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics

Brownian Dynamics vs. explicit solvent

Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Low Mach number physics

- only $u \ll a/h$ (lattice spacing / time step)
- only $u \ll c_s$
- $Ma = u/c_s \ll 1$
- ► low Mach number ⇒ compressibility does not matter ⇒ equation of state does not matter ⇒ choose ideal gas!

m_p particle mass:

$$p = \frac{\rho}{m_p} k_B T$$
$$c_s^2 = \frac{\partial p}{\partial \rho} = \frac{1}{m_p} k_B T$$
$$p = \rho c_s^2$$

$$k_B T = m_p c_s^2$$

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent

Mach number

Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

"Boltzmann number"

▶ Ideal gas, temp. T, particle mass m_p , sound speed c_s :

$$k_B T = m_p c_s^2$$

- $c_s \sim a/h$ (a lattice spacing, h time step)
- ► c_s as small as possible

Example (water): mass density $\rho = 10^3 kg/m^3$ sound speed realistic: $1.5 \times 10^3 m/s$ sound speed artificial: $c_s = 10^2 m/s$ temperature $T \approx 300K$, $k_B T = 4 \times 10^{-21} J$ particle mass: $m_P = 4 \times 10^{-25} kg$

	macroscopic scale	molecular scale
lattice spacing	a = 1mm	a = 1nm
time step	$h = 10^{-5} s$	$h = 10^{-11} s$
mass of a site	$m_a = 10^{-6} kg$	$m_a = 10^{-24} kg$
"Boltzmann	$Bo=(m_p/m_a)^{1/2}$	$Bo = (m_p/m_a)^{1/2}$
number"	$= 6 \times 10^{-10}$	= 0.6

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number

Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Consequences

- solvent ≡ just a medium to transmit momentum!
- easy and simple representation
- Iattice model with momentum conservation
- ideal gas
- inclusion of thermal fluctuations

Stochastic Lattice Boltzmann!

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number

Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Coupling lattice Boltzmann \leftrightarrow Molecular Dynamics

- (P. Ahlrichs & B. D. 1999)
 - particle system: stochastic Molecular Dynamics
 - solvent: stochastic lattice Boltzmann
 - dissipative coupling:

$$\blacktriangleright \vec{F} = -\zeta(\vec{v} - \vec{u})$$

- ► u
 [−]: interpolation from surroundings
- momentum conservation
- fluctuation-dissipation theorem

yields hydrodynamic interactions on large scales

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme

Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Equations of motion, continuum limit

$$ec{u}_i\equiv\int d^3ec{r}\sigma_i(ec{r}_i,ec{r})ec{u}(ec{r})$$

$$\frac{d}{dt}\vec{r}_i = \frac{1}{m_i}\vec{p}_i$$
$$\frac{d}{dt}\vec{p}_i = \vec{F}_i - \zeta_i \left(\frac{1}{m_i}\vec{p}_i - \vec{u}_i\right) + \vec{f}_i$$

$$\begin{aligned} \partial_t \rho + \partial_\alpha j_\alpha &= 0 \\ \partial_t j_\alpha + \partial_\beta \left(p \delta_{\alpha\beta} + \rho u_\alpha u_\beta \right) &= \partial_\beta \eta_{\alpha\beta\gamma\delta} \partial_\gamma u_\delta + \partial_\beta Q_{\alpha\beta} \\ &+ \sum_i \left[\zeta_i \left(\frac{1}{m_i} p_{i\alpha} - u_{i\alpha} \right) - f_{i\alpha} \right] \sigma_i \left(\vec{r}_i, \vec{r} \right) \end{aligned}$$

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Fluctuation-dissipation relations

$$\begin{array}{rcl} \langle f_{i\alpha} \rangle &=& 0 \\ \langle Q_{\alpha\beta} \rangle &=& 0 \\ \langle f_{i\alpha}\left(t\right) f_{j\beta}\left(t'\right) \rangle &=& 2k_B T \zeta_i \delta_{ij} \delta_{\alpha\beta} \delta \left(t-t'\right) \end{array}$$

 $\langle Q_{\alpha\beta}(\vec{r},t) Q_{\gamma\delta}(\vec{r}',t') \rangle = 2k_B T \eta_{\alpha\beta\gamma\delta} \delta(\vec{r}-\vec{r}') \delta(t-t')$

Proof for the coupled system: See B. D. & A. J. C. Ladd, Advances in Polymer Science 221, 89 (2009).

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Fluctuating lattice Boltzmann

- linearized Boltzmann equation (kinetic theory of gases)
- fully discretized
- sites *r*, lattice
 spacing *a*
- ▶ time t, time step h

 $n_i(\vec{r}+\vec{c}_ih,t+h)=n_i^{\star}(\vec{r},t)=n_i(\vec{r},t)+\Delta_i(\vec{r},t)$

- n_i mass density associated with velocity \vec{c}_i
- conserved mass density $\rho = \sum_i n_i$
- conserved momentum density $\vec{j} = \rho \vec{u} = \sum_{i} n_i \vec{c}_i$
- collision term Δ_i : stochastic variable

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Deterministic D3Q19 model

$$\begin{split} \rho &= \sum_{i} n_{i}, \vec{j} = \sum_{i} n_{i} \vec{c}_{i}, \ \vec{u} = \vec{j}/\rho \\ &\stackrel{\leftrightarrow}{\Pi} = \sum_{i} n_{i} \vec{c}_{i} \otimes \vec{c}_{i} \\ &\stackrel{eq}{n_{i}^{eq}} (\rho, \vec{u}) = w_{i} \rho \left(1 + \frac{\vec{u} \cdot \vec{c}_{i}}{c_{s}^{2}} + \frac{(\vec{u} \cdot \vec{c}_{i})^{2}}{2c_{s}^{4}} - \frac{u^{2}}{2c_{s}^{2}} \right), \text{ such that} \\ &\stackrel{\sum_{i} n_{i}^{eq}}{\sum_{i} n_{i}^{eq}} = \rho, \sum_{i} n_{i}^{eq} \vec{c}_{i} = \vec{j} \\ &\stackrel{\leftrightarrow}{\Pi} = \sum_{i} n_{i}^{eq} \vec{c}_{i} \otimes \vec{c}_{i} = \rho c_{s}^{2} + \rho \vec{u} \otimes \vec{u} \\ &\stackrel{\leftarrow}{} \text{ this fixes:} \\ &\stackrel{w_{i}(0)}{=} 1/3 \end{split}$$

•
$$w_i(nn) = 1/18$$

•
$$w_i(nnn) = 1/36$$

•
$$c_s = (1/\sqrt{3})(a/h)$$

- linear relaxation: $\Delta_i = \sum_j L_{ij}(n_j n_j^{eq})$
- streaming

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise

Probability distribution Equilibrium populations Gaussian approximation

Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

- Ladd JFM 1994: Noise acts only on the stress
- Adhikari / Stratford / Cates / Wagner EPL 2005: Noise should act on all non-conserved degrees of freedom
- B. D. / Schiller / Ladd PRE 2007: Confirmation based on the detailed-balance principle; restriction to stresses only correct in the hydrodynamic limit

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise

Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Poisson statistics

- $\nu_i \#$ of LB particles in velocity bin *i*
- contact with a large reservoir
- Poisson + constraints of conserved mass and momentum:

$$P(\{\nu_i\}) \propto \left(\prod_i \frac{\xi_i^{\nu_i}}{\nu_i!} \exp(-\xi_i)\right)$$
$$\delta\left(\sum_i \mu \nu_i - \rho\right) \delta\left(\sum_i \mu \vec{c}_i \nu_i - \vec{j}\right)$$

m_p mass of an LB particle

•
$$\mu = m_p/a^3 \Rightarrow n_i = \mu \nu_i$$
 and $\mu \xi_i = w_i \rho$

• Stirling: $\nu_i! \approx \exp(\nu_i \ln \nu_i - \nu_i)$

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise

Probability distribution

Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise

Probability distribution

Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Summary Conclusions

hence,

$$P(\{n_i\}) \propto \exp(S(\{n_i\}))$$
$$\delta\left(\sum_i n_i - \rho\right) \delta\left(\sum_i n_i \vec{c}_i - \vec{j}\right)$$

with

$$S(\{n_i\}) = \frac{1}{\mu} \sum_{i} \rho \mathbf{w}_i \left(\frac{n_i}{\rho \mathbf{w}_i} - \frac{n_i}{\rho \mathbf{w}_i} \ln \frac{n_i}{\rho \mathbf{w}_i} - 1 \right)$$

mean square fluctuations $\propto \mu$ (degree of coarse-graining)

Maximizing P

Lagrange multipliers λ_{ρ} , $\vec{\lambda}_{\vec{j}}$

$$\frac{\partial S}{\partial n_i} + \lambda_{\rho} + \vec{\lambda}_{\vec{j}} \cdot \vec{c}_i = 0$$
$$\sum_i n_i - \rho = 0$$
$$\sum_i n_i \vec{c}_i - \vec{j} = 0$$

approximate solution up to $O(u^2)$:

$$n_{i}^{eq} = w_{i}\rho\left(1 + \frac{\vec{u}\cdot\vec{c}_{i}}{c_{s}^{2}} + \frac{(\vec{u}\cdot\vec{c}_{i})^{2}}{2c_{s}^{4}} - \frac{u^{2}}{2c_{s}^{2}}\right)$$

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General background D3Q19 Noise Probability distribution

Equilibrium populations

Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Gaussian approximation for fluctuations

$$n_i^{neq} = n_i - n_i^{eq}$$
$$P(\{n_i\}) \propto \exp(S) \,\delta\left(\sum_i n_i - \rho\right) \delta\left(\sum_i n_i \vec{c}_i - \vec{j}\right)$$

u = 0 approximation:

$$P(\{n_i^{neq}\}) \propto \exp\left(-\sum_i \frac{(n_i^{neq})^2}{2\mu\rho \mathbf{w}_i}\right) \delta\left(\sum_i n_i^{neq}\right) \delta\left(\sum_i \vec{c}_i n_i^{neq}\right)$$

$$n_i^{neq} = (\mu
ho \mathbf{w}_i)^{1/2} x_i$$

$$P \propto \exp\left(-\frac{1}{2}\sum_{i}x_{i}^{2}\right)\delta\left(\sum_{i}\sqrt{w_{i}}x_{i}\right)\delta\left(\sum_{i}\sqrt{w_{i}}\vec{c}_{i}x_{i}\right)$$

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation

Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Modes

orthogonal transformation:

$$x_i = \sum_j \hat{e}_{ij} m_j$$
$$\sum_i x_i^2 = \sum_i m_i^2$$

- mass mode: $m_{2} \propto \sum \sqrt{m_{1}} \chi_{1}$
 - $m_0 \propto \sum_i \sqrt{w_i} x_i = 0$
- ► momentum modes: $m_1 \propto \sum_i \sqrt{w_i} x_i c_i^x = 0$ $m_2 \propto \sum_i \sqrt{w_i} x_i c_i^y = 0$ $m_3 \propto \sum_i \sqrt{w_i} x_i c_i^z = 0$
- bulk stress mode: $m_4 \propto \sum_i \sqrt{w_i} x_i (c_i^2 - 1)$
- ► shear stress modes: $m_5 \propto \sum_i \sqrt{w_i} x_i c_i^x c_i^y$ m_6, \dots, m_9
- ▶ ghost modes: m₁₀,..., m₁₈

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes

Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Detailed balance

$$P\left(\{m_i\}\right) \propto \exp\left(-\frac{1}{2}\sum_{i\geq 4}m_i^2\right)$$
$$\frac{\omega(m\to m^*)}{\omega(m^*\to m)} = \frac{\exp\left(-m^{*2}/2\right)}{\exp\left(-m^2/2\right)}$$
$$m^* = \gamma m + \varphi r$$

r Gaussian random number with $\langle r
angle = 0$ and $\left\langle r^2
ight
angle = 1$

$$\omega(m \to m^{\star}) = (2\pi\varphi^2)^{-1/2} \exp\left(-\frac{(m^{\star} - \gamma m)^2}{2\varphi^2}\right)$$

detailed balance holds if

$$\varphi = (1 - \gamma^2)^{1/2}$$

- All modes should be thermalized!
- Chapman–Enskog: Hydrodynamic limit is Landau–Lifshitz noise!

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

LB vs. BD: One simple comparison

Pham / Schiller / Prakash / B. D. JCP 2009

- BD: CPU $\propto N^{2.25}$
- ► LB+MD: $\sqrt{\langle R^2 \rangle}/L = const.$, CPU $\propto L^3 \propto R^3 \propto N^{3\nu} \propto N^{1.8}$

- system: single polymer chain, good solvent, thermal equilibrium
- BD: infinite system
- ► LB+MD: 3 boxes with periodic boundary conditions, size L, extrapolation L→∞

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Diffusion constant

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Couplin

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Rouse modes

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Rouse modes: Weak finite size effects

- internal forces cancel in leading order
- \blacktriangleright \Rightarrow "dipolar" interaction with periodic images
- ▶ ⇒ finite size effect L^{-3}

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

LB vs. BD

Efficiency Diffusion Rouse modes

Conclusions

- dissipative coupling LB+MD: simple, versatile, efficient
- rigorous understanding of thermal fluctuations in ideal-gas LB models
- rigorous understanding of the fluctuation-dissipation theorem for the coupled system
- thermal noise is necessary for all LB modes, and for the Brownian particles
- quantitative agreement between Brownian Dynamics and LB+MD
- BD: for highly dilute systems with few Brownian particles
- LB+MD: advisable for systems with many particles

Stochastic LB

B. Dünweg

Introduction

Hydrodynamic interactions Brownian Dynamics Brownian Dynamics vs. explicit solvent Mach number Boltzmann number Strategy

Coupling

Scheme Equations of motion FDT

Fluctuating LBE

General backgroun D3Q19 Noise Probability distribution Equilibrium populations Gaussian approximation Modes Detailed balance

B vs. BD

Efficiency Diffusion Rouse modes