Recently, there has been an upsurge of the interest in open
quantum systems, whose properties are still less known compared
to those of the closed ones. Besides their general fundamental
importance, they are also of the utmost relevance
in very active fields. We can mention a few of them, such as
the study of the quantum to classical correspondence [1],
quantum dots [2], microlasers having chaotic resonant cavities
[3-5], and chaotic scattering [6,7]. In this talk I will refer to
very recent developments in the theory of open systems.
These include new tools to study localization which provide
a novel point of view for analyzing scarring [8-10]. I will also
introduce a new representation in phase space specially suited
for probing quantum repellers [11]. Finally, I will show how
the environment influences localized structures [12].
[1] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72, 2508 (1994); D. Braun, Dissipative Quantum Chaos and Decoherence (Springer-Verlag, New York, 2001). [2] R. Akis, D. K. Ferry, and J. P. Bird, Phys. Rev. Lett. 79, 123 (1997). [3] W. Fang, A. Yamilov, and H. Cao, Phys. Rev. A 72, 023815 (2005); T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003). [4] J. Wiersig, Phys. Rev. Lett. 97, 253901 (2006). [5] J. U. Nockel and D. A. Stone, Nature (London) 385, 45 (1997); J. Wiersig and M. Hentschel, Phys. Rev. A 73, 031802(R) (2006); Phys. Rev. Lett. 100, 033901 (2008). [6] P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, 1998). [7] C. Jung and T. H. Seligman, Phys. Rep. 285, 77 (1997). [8] D. Wisniacki and G. G. C., Phys. Rev. E 77, 045201(R) (2008). [9] M. Novaes, J. M. Pedrosa, D. Wisniacki, G. G. C., and J. P. Keating, Phys. Rev. E 80, 035202(R) (2009). [10] J. M. Pedrosa, G. G. C., D. A. Wisniacki, and L. Ermann, Phys. Rev. E 79, 016215 (2009). [11] L. Ermann, G. G. C., and M. Saraceno, Phys. Rev. Lett. 103, 054102 (2009). [12] L. A. Raviola, G. G. C., and A. M. F. Rivas, Phys. Rev. E 81, 047201 (2010). |
![]() |