Dependence of the Glass Transition on the Spatial Dimension

Rolf Schilling

Institute of Physics, Johannes Gutenberg University, Staudinger Weg 7, 55099 Mainz, Germany

April 6, 2010

Abstract

We have investigated analytically and numerically the dependence of the liquid-glass transition of hard spheres on the spatial dimension d, in the framework of mode-coupling theory. For d = 2 and d = 3 most quantities, e.g. the critical nonergodicity parameters, resemble each other. A striking similarity between the critical packing fraction $\varphi_c(d)$ and that for random close packing, $\varphi_{rcp}(d)$, has been found. In order to explore a possible mean field character of MCT the limit $d \to \infty$ was studied, as well. In contrast to earlier results the critical collective and self nonergodicity parameters $f_c(q)$ and $f_c^{(s)}(q)$ exhibit non-Gaussian q-dependence. $f_c(q)$ and $f_c^{(s)}(q)$ differ on a scale $q \sim d^{1/2}$, but become identical for $q \sim d$. The analytically determined $\varphi_c(d) \cong 0.22 \ d^2 \ 2^{-d}$ is above the corresponding Kauzmann packing fraction $\varphi_K(d)$ derived earlier by a small cage expansion. Its quadratic pre-exponential factor is different from the linear one, found by others. Although the static structure factor for $\varphi_c(d)$ is very close to that of an ideal gas for $d \to \infty$, we argue that the glass transition may still be driven by the cage effect and might have similarities to the jamming transition.