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1-d Coulomb problem

Coulomb potental V (x) = qq′

4πǫo|x| as in the 3d case but for

a variable x ∈ R =⇒ the hamiltonien is H = − ~
2

2m
d2

dx2 + V

We will only consider the attractive barrier qq′ < 0
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We will only consider the attractive barrier qq′ < 0

-20 -10 10 20

-0.5

-0.4

-0.3

-0.2

-0.1

Ordinary differential equation, but discontinuous at
x = 0 which brings major problems, solved in
G Abramovici & Y. Avishai, J. Phys. A: Math. Theor.
(2009) 42285302.
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Bound spectrum

One finds two kinds of wave functions :

Régular states, which write

ψn(x) = −

(

|λ|

2

)
3

2 x

n3
e−

|λx|
2n L′

n(
|λx|

n
)

(n ∈ N
∗, L Laguerre polynomial, λ = 2mqq′

4πǫo~2 ), with energy

En = −
~

2λ2

8m n2

When q = q′ = qe, it is exactly Rydberg’energy −EI/n
2.
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Bound spectrum

One finds two kinds of wave functions :

Anomalous states, which write

ψn+ 1

2

(x) =

(

|λ|

2n+ 1

)
3

2 |x|

rn
(

pn(
λx

2n+ 1
)K0(

λx

2n+ 1
) + qn(

λx

2n+ 1
)K1(

λx

2n+ 1
)

)

(pn and qn integer polynomials of degree n, Ki second
kind Bessel functions), with energy

En+ 1

2

= −
~

2λ2

8m(n+ 1
2)2
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Bound spectrum

One finds two kinds of wave functions :

Regular and anomalous spectra intertwin and give a
new Rydberg spectrum, with EI → 4EI
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Regular states

Regular states exactly correspond to s hydrogen states
(rψn(r), r > 0).

They are continuously continued on the whole real line
(with odd symmetry).

Normalization is changed by a factor 2 (radial wave functions of

hydrogen atom are only summed over the half-line).
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Regular states

Regular states exactly correspond to s hydrogen states
(rψn(r), r > 0).

They are continuously continued on the whole real line
(with odd symmetry).

Normalization is changed by a factor 2 (radial wave functions of

hydrogen atom are only summed over the half-line).

The free spectrum states also correspond to free
hydrogen states, with l = 0.

But normalization is unchanged.
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Anomalous states

Anomalous states have no corresponding hydrogen
states.

They are even (opposite symmetry to regular states).
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Anomalous states

They overlap each over (i.e. they are not orthogonal
together!

1 2 4 6 8 10 11

1

2

4

6

8

10

11

1 2 4 6 8 10 11

1

2

4

6

8

10

11

Friday, the 24th of June 2011 – p. 5/17



Anomalous states

They also overlap with free states (i.e. anomalous and
free states are not orthogonal).
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〈ψp+ 1

2

|ψη〉 as a function of η.
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Regularized potential

We replace the Coulomb potential V by Vε = qq′

4πǫo
√
x2+ε2

.
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Regularized potential

We replace the Coulomb potential V by Vε = qq′

4πǫo
√
x2+ε2

.

The modified hamiltonian has again odd solutions χε2p
and even solutions χε2p+1 (p ∈ N).

χε2p → χ0
2p = ψp when ε→ 0.

χε2p+1 → χ0
2p+1 when ε→ 0, but χ0

2p+1 is not a Coulomb
state.

They may be associated functions.
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Regularized potential

The corresponding energies converge to En, therefore
there is a discontinuity at ε = 0.

-Log@ΕD

Η
=
-

E
I
�
E

Ε

�

0
1
Ε

�

1 Ε
�

2
3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

0

Regularized spectra versus 1/ε.
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Regularized potential

Eε
p+ 1

2

= Ep+ 1

2

, for ε = ε̃p.

The corresponding function is a regularized anomalous
function which only differs arround x = 0.
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Alternative

Two possibilities, either E0
p+ 1

2

= Ep+ 1

2

6= lim
ε→0

Eε
p+ 1

2

Or E0
p+ 1

2

= lim
ε→0

Eε
p+ 1

2

(continuous spectrum).

In the first case, the complete basis of states exactly
includes all free states (|ψη〉 and (|ψ̌η〉), regular (odd)
and anomalous (even) bound states.

In the second case, the complete basis includes all free
states, regular bound states |ψp〉 (odd) and | |ψp|〉 (even).

We discriminate the two case and thus solve the
alternative by calculating the corresponding
completeness relations.
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Completeness relation

The completeness relation needs to use the metric
matrix g and writes

I =
∑

i

|φi〉g
−1
ij 〈φj |

(cf G. Abramovici, Solid State Commun. 109 (1998), p. 253)
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Completeness relation

The completeness relation needs to use the metric
matrix g and writes

I =
∑

i

|φi〉g
−1
ij 〈φj |

In basis {|ψη〉 free states in R+, |ψ̌η〉 free states in R−,
|ψn+ 1

2

〉 anomalous bound states, |ψn〉 regular ones}, the
metric writes

g =







I 0 R 0
0 I R 0
R† R† S 0
0 0 0 I







(R is the overlapping between anomalous and free
states, S the overlapping between anomalous states).
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Completeness relation

In the same basis, its inverse writes

g−1 =









I +RBR† RBR† −RB 0
RBR† I + RBR† −RB 0
−BR† −BR† B 0

0 0 0 I









where B = (S − 2R†R)−1.
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Completeness relation

The completeness relation then writes

I =

∫

dk|ψη〉〈ψη| +

∫

dk|ψ̌η〉〈ψ̌η| +

∑

m∈N

n∈N

∫

R+×R+

dk dk′
(

|ψη〉 + |ψ̌η〉
)

αm(η)Bmnαn(η
′)

(

〈ψη′| + 〈ψ̌η′|
)

−
∑

m∈N

n∈N

∫

R+

dk
(

|ψη〉 + |ψ̌η〉
)

αm(η)Bmn〈ψn+ 1

2

|

−
∑

m∈N

n∈N

∫

R+

dk|ψm+ 1

2

〉Bmnαn(η)
(

〈ψη| + 〈ψ̌η|
)

+
∑

m∈N

n∈N

|ψm+ 1

2

〉Bmn〈ψn+ 1

2

| +
∑

p∈N∗

|ψp〉〈ψp|
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Completeness relation

If one discards all anomalous states, there is a
degeneracy between solutions ψn (even) and |ψn| (odd),
these last are absent of the other basis.

The completeness relation then writes

∑

p∈N∗

ϕp(
u

2p
)ϕp(

u′

2p
) +

∑

p∈N∗

|ϕp(
u

2p
)| |ϕp(

u′

2p
)|+

∫ ∞

0
fη(−

u

2η
)fη(−

u′

2η
)dk +

∫ ∞

0
fη(

u

2η
)fη(

u′

2η
)dk = λδ(u− u′)

This relation proves wrong, which indicates that
anomalous states should not be discarded.
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Completeness relation

The spaning of |ψn+ 1

2

〉 writes

|ψn+ 1

2

〉 =
∑

p∈N∗

bpn| |ψp|〉 +

∫ ∞

0
αn(η)(|ψη〉 + |ψ̌η〉)dk

We apply H on the left and get

En+ 1

2

|ψn+ 1

2

〉 =
∑

p∈N∗

bpnEp| |ψp|〉+

∫ ∞

0
αn(η)Eη(|ψη〉+|ψ̌η〉)dk

Substituting in the completeness relation (2nd case),

∑

p∈N∗

bpn(Ep − En+ 1

2

)| |ψp|〉 +

∫ ∞

0
αn(η)(Eη − En+ 1

2

)(|ψη〉 + |ψ̌η〉)dk = 0

⇐⇒ bpn = 0 ∀p ∈ N
∗ and αn(η) = 0 ∀η ∈ R+ impossible
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Numerical proof

We test the two completeness relations on a centered
gaussian function.
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In red, the test function, in blue dotted line its
decomposition through the basis including anomalous
functions, in red dashed line its decomposition through

the basis including only regular functions.
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Numerical proof

This test is not concluding, however one should not
forget that the curves are calculated with several
approximations.

In particular, I take p = 1 up to 30, for ψp, calculations
seem to be converging within this limit.

Also, I take q = 0, 10 for ψq+ 1

2

, calculations seem to be
converging within this limit.

I tried to include anomalous free states, but it seems
not the right idea.
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Non-hermiticity of H

Here, hermiticity writes, in detail,
∫

dxψ(x,E1)
[

−∂2ψ
∂x2 (x,E2)+

λ
|x|ψ(x,E2)

]

=
∫

dx
[

−∂2ψ
∂x2 (x,E1)+

λ
|x|ψ(x,E1)

]

ψ(x,E2)

Its violation comes from the discontinuity at x = 0 of
[

−ψ(x,E1)
∂ψ

∂x
(x,E2) +

∂ψ

∂x
(x,E1)ψ(x,E2)

]

This term is zero when you calculate it with only regular
states.
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Regularized hamiltonian

We introduce a point-like correction to H:

δH = θ(H)(δ ×H)θ(H†) − θ(H)(H× δ)θ(H†) ,

where ∀n ∈ N, θ(En+ 1

2

) = 1
ϕ

n+1
2
(0) , δ(x)|χ〉 = χ(0)|χ〉 ∀χ.

θ is analytical.

Regular free and bound states are still eigenfunctions of
H + δH.

Anomalous states are modified: ϕn+ 1

2

→ ϕ̃n+ 1

2

, the new

eigenfunctions of H + δH.
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Regularized hamiltonian

ϕ̃n+ 1

2

are solutions of g−1(H +H†)reduced

=

(

H +RBR†H − RBHR† HR/2 + RBR†HR−RBHS/2

−BR†H +BHR† H/2 −BR†HR+BHS/2

)

Should the hamiltonian be corrected ?
If yes, these corrected states are valid.
If no, uncorrected anomalous states are the valid
solutions.
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Conclusion

Anomalous states are (slightly) interacting one with
another.

The Coulomb potential is non-hermitian.

It is corrected by adding pointlike terms, which can be
interpretated as self-interacting terms.

The spectrum could not be complete if anomalous
states were removed.
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Free states

One can use repulsive or attractiv Coulomb potential
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In both cases, one finds (non-trivially) that transmission
is zero, t = 0.

=⇒ free states have the same normalization than radial
3-d solutions of hydrogen atom, while bound states
have a modified normalization.
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Transmission

The transmission is 0.

It was first claimed by M. Andrews, Am. J. Phys. 44,
1064 (1976) (no complete demonstration).

A wrong solution is given in V. S. Mineev, Theor. Math.
Phys. 140 1157 (2004).
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Overlappings

Here are the first overlappings (matrix S)







1 −0.0108486 −0.00510692 −0.00309526
−0.0108486 1 −0.0011072 −0.000672455
−0.00510692 −0.0011072 1 −0.000319168
−0.00309526 −0.000672455 −0.000319168 1






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Integer polynomials pn, qn

p0 = 1 ,

q0 = 1 ,

pn(x) = (2n+ 1)pn−1(x) + 2x(p′n−1(x) − pn−1(x) − qn−1(x)) ,

qn(x) = (2n− 1)qn−1(x) + 2x(q′n−1(x) − pn−1(x) − qn−1(x)) ,

and normalization factor writes

rn = (2sn +
π2((2n+ 1)!!)2

4
)(2n+ 1) ,

where s0 = 1 ,

s1 = 11 ,

sn+1 = sn(2n+ 3)2 + 2((2n− 1)!!)2 .
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Calculation of ϕ̃n+1
2

We define matrix representation M = 〈φi|M|φj〉.

Be careful that eigenvectors are that of g−1M , with this
definition.

H =











Eηδ(η − η′) 0 En+ 1

2

Rη,n 0

0 Eηδ(η − η′) En+ 1

2

Rη,n 0

Eη′Rm,η′ Eη′Rm,η′ En+ 1

2

Smn 0

0 0 0 Epδpq











H† =









Eηδ(η − η′) 0 EηRη,n 0

0 Eηδ(η − η′) EηRη,n 0
Em+ 1

2

Rm,η′ Em+ 1

2

Rm,η′ Em+ 1

2

Smn 0

0 0 0 Epδpq








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Calculation of ϕ̃n+1
2

We get rid of state |ψη〉 − |ψ̌η〉 by

(|ψη〉, |ψ̌η〉) → (|ψη〉 + |ψ̌η〉, |ψη〉−|ψ̌η〉
2 )
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