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1-d Coulomb problem | D 5

ORSA‘y

# Coulomb potental V(z) = 9 as in the 3d case but for

4d7eq| x|

a variable » € R = the hamiltonien is H = — -4, 1 v

~ 2m dx?

# We will only consider the attractive barrier ¢g¢’ < 0

o |
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1-d Coulomb problem | D, 5

ORSA‘y

# Coulomb potental V(z) = 9 as in the 3d case but for

4d7eq| x|

a variable » € R = the hamiltonien is H = — -4, 1 v

~ 2m dx?

# We will only consider the attractive barrier ¢g¢’ < 0

# Ordinary differential equation, but discontinuous at
x = 0 which brings major problems, solved in
G Abramovici & Y. Avishal, J. Phys. A: Math. Theor.
L (2009) 42285302. J
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Bound spectrum D, 5

One finds two kinds of wave functions :
# Reégqular states, which write

wnlo) == () e F

ns n

(n € N*, L Laguerre polynomial, \ = 4272‘1%2) with energy
212
g A
8m n?

® When g = ¢ = q., it is exactly Rydberg'energy —FE; /n?.
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Bound spectrum | D, S

One finds two kinds of wave functions :
® Anomalous states, which write

Ypy1(®) = (QA%L1> '%3
(b Kol + o K (p) )

2n + 1 2n + 1 n+1 2n + 1

|

(p, and ¢, iInteger polynomials of degree n, K; second
kind Bessel functions), with energy

R \?
En+ o 1
8m(n + 5)2

o |
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One finds two kinds of wave functions :

# Regular and anomalous spectra intertwin and give a
new Rydberg spectrum, with E; — 4F;

o |
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#® Regular states exactly correspond to s hydrogen states
(riop(r), 7 > 0).

# They are continuously continued on the whole real line
(with odd symmetry).

# Normalization is changed by a factor 2 (radial wave functions of

hydrogen atom are only summed over the half-line).

o |
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Regular states exactly correspond to s hydrogen states
(riop(r), 7 > 0).

They are continuously continued on the whole real line
(with odd symmetry).

Normalization is changed by a factor 2 (radial wave functions of
hydrogen atom are only summed over the half-line).

The free spectrum states also correspond to free
hydrogen states, with [ = 0.

But normalization is unchanged.

|
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Anomalous states | D D
ORSA‘y

=

# Anomalous states have no corresponding hydrogen
states.

#® They are even (opposite symmetry to regular states).
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Anomalous states

#® They overlap each over (i.e. they are not orthogonal

together!
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#® They also overlap with free states (i.e. anomalous and
free states are not orthogonal).

1.5

L <¢p+% 4) as a function of 7. J
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Regularized potential | D, S

ORSA‘y

#® We replace the Coulomb potential V by V. = yo— 3/‘;2?




Regularized potential | D, 5

ORSA‘y

#» We replace the Coulomb potential V' by V. = yo— f/‘ﬁ

» The modified hamiltonian has again odd solutions x5,
and even solutions x5,,, (p € N).

® X5, — X9, = ¥p When e — 0.

® X541 — X9pp1 When e — 0, but x5 ., is not a Coulomb
state.

# They may be associated functions.

o |
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Regularized potential | D 5
S

=

#® The corresponding energies converge to E,,, therefore
there is a discontinuity at ¢ = 0.

.
.
=
.
-=o
&l &6, 3 4 5 6 7 8 9 10 11 12 13 14
—Logl¢]
L Regularized spectra versus 1/e. J
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Regularized potential | D 5
S

=

. .
o Ep+% —Ep+%,f0r5—5p.

# The corresponding function is a regularized anomalous
function which only differs arround x = 0.

|
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Alternative ) 5

= E 1 lim E€
pt3 # e—0 p+%

® Two possibilities, either £

1
2

® OrEY , = lim E¢ , (continuous spectrum).
P+3 0 p+%( P )

1
2
# In the first case, the complete basis of states exactly

includes all free states (|v,,) and (!%)), regular (odd)
and anomalous (even) bound states.

# In the second case, the complete basis includes all free
states, regular bound states |¢,,) (odd) and ||¢,|) (even).

# We discriminate the two case and thus solve the
alternative by calculating the corresponding
completeness relations.

o |
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Completenessrelation | 25
L

-

#® The completeness relation needs to use the metric
matrix ¢ and writes

I= Zm g;; (5]

(cf G. Abramovici, Solid State Commun. 109 (1998), p. 253)

o |
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#® The completeness relation needs to use the metric

Completenessrelation | - 5
S

-

matrix g and writes

1= Z ’¢z gzg

® Inbasis {|¢,) free states in R, |¢),)) free states in R_,

]¢n+%> anomalous bound states, |¢,,) regular ones}, the

metric writes I 0O R O
|0 I R O

9=\ Rt Rt S 0

0 o 0 [

(R is the overlapping between anomalous and free
states, S the overlapping between anomalous states). J
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Completenessrelation | 25
L

=

® In the same basis, Its inverse writes

(I+RBR' RBR' —RB 0)
1_| RBR' I+4+RBR' —-RB 0
g ~BRt  —BRT B 0

\ 0 0 0 I/

where B = (S —2RTR)~ 1.




Completenessrelation | 25
L

=

# The completeness relation then writes

1 = /dk‘¢n><¢n|+/dkwn>@n|+
S~ [k b’ (104) + 164)) @) Buwnano) (| + ()

men ¥ Ry xRy
neN

-2 /de ) + 1)) Qm (1) B (1

meN

=3 ) Brnonn) (] + (5]
+ Wm l>an<¢n l‘ + |¢ ><¢ ‘
L WZE; +3 +3 p%\;* p/\¥p J

neN



Completenessrelation | - 5
S

f o |[f one discards all anomalous states, there Is a T
degeneracy between solutions v, (even) and |y, | (odd),
these last are absent of the other basis.

#® The completeness relation then writes

Ul

Z Spp ) + Z ’Spp ‘ op( QP)H
peN* peN*

U /
[ et dk+/ g gl = Ad(u =)

# This relation proves wrong, which indicates that
anomalous states should not be discarded.

o |

Eridav. the 24N of June 2011 — b 8/17



Completenessrelation | 05
S

-

# The spaning of |y, 1} writes

= 5 byl ) / () (1) + )

peN*

# We apply H on the left and get
Burgltniy) = 3 Bl Wol)+ | anln)B(lb)+1d)dh
peEN*

® Substituting in the completeness relation (29 case),

S bon (B = By 65+ an() By = By o) + 16k =

peN*
L = by = 0Yp € N*and an () = 0 V5 € R, impossible |
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# We test the two completeness relatlons on a centered T
gaussian fumtlon
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In red, the test function, in blue dotted line its
decomposition through the basis including anomalous
functions, in red dashed line its decomposition through

the basis including only regular functions. J
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Numerical proof D, S

# This test is not concluding, however one should not

forget that the curves are calculated with several
approximations.

# In particular, | take p =1 up to 30, for ¢, calculations
seem to be converging within this limit.
1, calculations seem to be

# Also, | take ¢ = 0,10 for ¢q+§,
converging within this limit.

#® | tried to include anomalous free states, but it seems
not the right idea.

o |
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Non-hermiticity of H | 35
S

-

# Here, hermiticity writes, in detall,
Jdzi (e, Br) 55 (2, o)+ 2y (, )| =
Jtal -5 (x, Fa)+ 0, B) |, Fo)

# |ts violation comes from the discontinuity at + = 0 of

[—w(x,El)gii (7, E2) + g—g(ﬂf El)lb(waE?)]

o This term is zero when you calculate it with only regular
states.

o |
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Regularized hamiltonian | 25

ORSA‘y

-

# We introduce a point-like correction to H:

OH = O(H) (8 x H)O(H') — 0(H)(H x §)(HT) |

where Vn € N, 9(En+%) = 90n+1; o d(x)|x) = x(0)|x) Vx.

# 04 is analytical.

# Regular free and bound states are still eigenfunctions of
H+ oH.

# Anomalous states are modified: ¢, 1 — ¢, 1, the new
eigenfunctions of H + éH.

o |
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772) Regularized hamiltonian | D, )
TS ORSA‘y
-

o @n+% are solutions of ¢~ (H + H" ) educed T
 (H+RBR'H—- RBHR'! HR/2+ RBR'HR — RBHS/Z)
B —~BR'H + BHR! H/2 — BRTHR+ BHS/2

# Should the hamiltonian be corrected ?
If yes, these corrected states are valid.

If N0, uncorrected anomalous states are the valid
solutions.

o |
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Conclusion ] D, D
ORSA‘y

-

# Anomalous states are (slightly) interacting one with
another.

# The Coulomb potential is non-hermitian.

# |tis corrected by adding pointlike terms, which can be
Interpretated as self-interacting terms.

# The spectrum could not be complete if anomalous
states were removed.

o |
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Free states D

# In both cases, one finds (non-trivially) that transmission
IS zero, t = 0.

#® — free states have the same normalization than radial
3-d solutions of hydrogen atom, while bound states

have a modified normalization.

o |
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® The transmission iIs 0. T

# It was first claimed by M. Andrews, Am. J. Phys. 44,
1064 (1976) (no complete demonstration).

# A wrong solution is given in V. S. Mineev, Theor. Math.
Phys. 140 1157 (2004).

o |
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Overlappings D 5

ORS A‘y
Here are the first overlappings (matrix .S)
1 —0.0108486 —0.00510692  —0.00309526
—0.0108486 1 —0.0011072  —0.000672455
—0.00510692  —0.0011072 1 —0.000319168
—0.00309526 —0.000672455 —0.000319168 1

o |
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Integer polynomialsp,, g, . D, 5

po = 1,

Qo = 1,
pu(z) = (2n+ Dpp-1(2) + 22(p_1(2) — Pn-1(2) — gn-1(2)) ,
@(z) = (2n—1)gn-1(z) +22(gp_1(z) — pr-1(2) — gn-1(2)) ,

and normalization factor writes

72 ((2n + 1)!1)?

rn = (28 + i (2n+1)
where sop = 1,
S1 = 11 ,

| Sni1 = sp(2n43)* +2((2n — D)%, |
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® We define matrix representation M = (¢;| M |p;).

Calculationof ¢, 1

® Be careful that eigenvectors are that of g—' M, with this

9

definition.
/En5(77 -1 0 En+§Rn,n
" 0 E,o(n—n") E, 1Ry,
En/ Rmﬂ?/ En/ Rm’n’ En+% Smn
\ 0 0 0
(Ené(n — 1) 0 B iy n
ot 0 Ed(n—n")  EyRyn
Em+% Ry Eer% Ry Em+% Smn
\ 0 0 0

.
0

0
EipOpq )

0

0

0
EipOpq )
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» We get rid of state |+,) — |1,) by
(180), [in)) — (lwom) + [bm), 10

Calculationof ¢, 1
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