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PT quantum mechanics has an
active research community

Nearly1000 published papers!
|_ots of Conferences!

Andrianov, Caliceti, Fring, Gazeau, Geyer, Jain, Jones,
Mostafazadeh, Rotter, Scholz, Wu, Znojil, ....

Webpage!
Hook: PT Symmeter

Google “PT Symmetric” --- 72,500 hits!


http://ptsymmetry.net/
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PT guantum mechanics Is fun
because you can re-visit the things
you already know about ordinary

Hermitian quantum mechanics!

Here are some examples...




Example 1: Dimensional expansions

CMB, S. Boettcher, and L. Lipatov,
Physical Review Letters, 68, 3674 (1992)

The I1dea:
Physics becomes simple near D = 0, so obtain a
nonperturbative solution by expanding in powers of D



D-dimensional square well

The time-independent s-wave Schrodinger equation

—y"(r)=[(D=1)/rly'(r) =Ew(r)

where we impose the boundary conditions w(0) finite,
w(1)=0. The eigenvalue E satisfies the quantization
condition J—|+p,-'1{\ﬁ57] =()., which determines E as a
function of D. The eigenvalue spectrum E,(D), n=0,
1,2,3,..., can be expressed as series in powers of the di-
mension [

E.D)= 2 a,xD*

k=0
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Dimensional expansions in
guantum field theory...

CMB, arXiv: hep-th/1003.3881
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PT quantum field theory
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Example 2:Functional integrals

CMB and S. Klevansky,
Physical Review Letters 105, 031602 (2010)
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Hermitian Hamiltonians:
BORING!

The eigenvalues are always real — nothing interesting happens




PT-symmetric Hamiltonians:
~ ASTONISHING!

Phase transition between parametric regions of
broken and unbroken PT symmetry...
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Another example of a phase transition:
CMB and R. J. Kalveks, Int. J. Theor. Phys. 50, 955 (2011)

Replace the Heisenberg Algebra [, p] = 17 with the

E2 Algebra:

[u, J] = v, v, J| = —1u, [u.v] =0



Hermitian Hamiltonian:
H=J°+ qu

Re(E)




PT-symmetric Hamiltonian

Im(E)
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FIG. 3: Odd bosonic eigenvalues for the P7T-symmetric Hamiltonian (9) in which the parameter
g is pure imaginary. The eigenvalues are plotted as functions of Im g. The real (imaginary) parts
of the eigenvalues are shown in the left (right) panel. Observe that the eigenvalues are all real
when —3.4645 < Im g < 3.4645; this is the region of unbroken P7 symmetry. There is an infinite
sequence of critical points; the next critical points are at Im g = +15.0485 and at £34.7994.



First observation of PT phase transition

Figure 4: Experimental observation of spontaneous passive P7-symmetry breaking.

Output transmission of a passive T complex system as the loss in the lossy waveguide
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A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. \Volatier-Ravat, V. Aimez,
G. A. Siviloglou, and D. N. Christodoulides, Physical Review Letters 103, 093902 (2009)



What exactly is this PT phase transition?

To understand the P T phase
transition — introduce
PT classical mechanics

...a spin-off from PTQM



Motion on the real axis

—_—

G

Motion of particles 1s governed by Newton’s Law:

F=ma
In freshman physics this motion is restricted to the
REAL AXIS.



Harmonic oscillator:
Particle on a spring

Back and forth motion on the real axis:
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Turning point Turning point

H=7p*+2z* (=0



Harmonic oscillator:

Motion in the
complex plane:

A

Turning point

H = p* + °
(€ =0)
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Classical orbit that visits three sheets of
the Riemann surface



€E=T-2 11 sheets
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Bohr-Sommerfeld
Quantization of a complex atom

faop = (n+3)r



The effect of closed orbits for real energy
VS. open orbits for complex energy
suggests a way to understand tunneling...

CMB, D. C. Brody, and D. W. Hook, J. Phys. A 41, 352003 (2008)

CMB and D. W. Hook, arXiv: hep-th/1011.0121



Quartic potential: REAL ENERGY
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FIG. 1: Eight classical trajectories in the complex-z plane representing a particle of energy £ = —1

in the potential x* — 5x2. The turning points are located at = = £2.19 and r = +0.46 and are
indicated by dots. Because the energy is real, the trajectories are all closed. The classical particle

stays in either the right-half or the left-half plane and cannot cross the imaginary axis. Thus, when
the energy is real, there is no effect analogous to tunneling.



COMPLEX
ENERGY:

4
FIG. 2: Classical trajectory of a particle moving in the complex-z plane under the influence of a
double-well z* — 522 potential. The particle has complex energy £ = —1 — i and its trajectory
does not close. The trajectory spirals outward around one pair of turning points, crosses the
Imaginary axis, and then spirals inward around the other pair of turning points. It then spirals
ountward again, crosses the imaginary axis, and goes back to the original pair of turning points.
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FIG. 1: Quartic asymmetric double-well potential Vi{z) m (1)

showing the first six quantum energy levels. The bottom of
the left well is at V' = —24.0384, and the bottom of the right
well s at V' = —12.5501. The ground-state energy Eo lies
below the bottom of the right potential well. The next four

energy levels lie between the bottom of the right potential
well and the top of the barrier, which is at V' = 4.1144. The

smcth energy level By lies above the barrer.
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FIG. 2: Quartic asymmetric double-well potential V' (z) in (1)
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showing the first =ix quantum energy levels. The bottom of

the left well 1= at V' = —24.0384 and the bottom of the right

well i at V' = —12.5501. The ground-state energy Fn lies
below the bottom of the right potential well. The first four

excited states lie between the bottom of the right potential

well and the top of the barrier, which i=s at V' = 4.1144. The
fifth excited state Eg lies above the barrier.



Periodic potential

| = Lapd .
CMB and T. Arpornthip, H [J:-’ Pl = aF ':":'E":.-r]'
Pramana 73, 375 (2009) Im[X]

| -
s - ~
1=

Figure 5. A tunneling trajectory for the Hamiltonian (2) with
FE = 0.1 — 0.15i. The classical particle hops at random from well to well
in a random-walk fashion. The particle starts at the origin and then hops
left. right. left, left, right, left, left, right, right. This is the sort of behavior
normally associated with a particle in a crystal at an energy that is not in a
conduction band. At the end of this simulation the particle is situated to the
left of its initial position. The trajectory never crosses itself.
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Figure 6. A classical particle exhibiting a behavior analogous to that of a
quantum particle in a conduction band that is undergoing resonant tunneling.
Unlike the particle in Fig. 5, this classical classical particle tunnels in one
direction only and drifts at a constant average velocity through the potential.
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Figure 7. Complex-energy plane showing those energies that lead to tun-
neling (hopping) behavior and those energies that give rise to conduction.
Hopping behavior is indicated by a hyphen - and conduction is indicated by
an X. The symbol & indicates that no tunneling takes place; tunneling does
not occur for energies whose imaginary part is close to 0. In some regions
of the energy plane we have done very intensive studies and the X’s and -'s
are densely packed. This picture suggests the features of band theory: If the
imaginary part of the energy is taken to be —(0.9, then as the real part of the
energy increases from —1 to +1, five narrow conduction bands are encoun-
tered. These bands are located near Re K = —0.95, —0.7, —0.25, 0.15, 0.7.
This picture is symmetric about Im ' = 0 and the bands get thicker as |Im E|
increases. A total of 68689 points were classified to make this plot. In most
places the resolution (distance between points) is 0.01, but in several regions
the distance between points is shortened to 0.001. The regions indicated by
arrows are blown up in Figs. 8 and 9.



But... It’s not so simple...
Complex energy does not always mean open orbits!

A. Anderson, CMB, U. Morone, arXiv: math-ph 1102.4822



Potential: V(z) = z* — 5z?
Equation of motion:  ['(¢)]* + V(z) = E

Solution:  z(t) = asn(ibt, k) (Jacobi elliptic function)

snfu,k) ds
uz[ k:,_aj_a—«.,fESJrJ‘E
0 V(1 —s%)(1—k?s?) " ® 5+VB+4E

Trajectory closes under the replacement:

bt — bt +AmK (k) + 2na K (k')

Condition for having a periodic orbit: 7 Im[2i/<(k) /D]

m  Im[K (k") /b]
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FIG. 3: Some quantized complex energies E for the potential V(z) = z* — 522 for —3 < Re E < 3
and —2 < ImFE < 2 [see (14)]. These curves represent some of the (infinite number of) special
complex energies F for which the classical orbits are periodic. These energies oceur for rational
values of n/m > 2. When n = 2 and m = 1, F is real and positive. (This corresponds to oscillatory
particle motion above the barrier in the potential.) The energy curve just above the positive-real
axis in this figure corresponds to (n,m) = (5,2). Subsequent energy curves in anticlockwise order
correspond to (n,m) = (3,1), (n,m) = (4,1), (n,m) = (5,1), (n,m) = (7,1), (n,m) = (10,1),
(n,m) = (20,1), (n,m) = (40,1), and the negative real axis corresponds to n/m = oc. (When
E < 0, the particle motion is oscillatory and confined to either the left or the right well.) The energy
curves in the lower-half ¥ plane are complex conjugates of the energy curves in the upper-half E
plane. Near the origin these curves are asymptotically straight lines [see (15 and (16)].
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E = —0.8529588246 + i
(n,m)=(8.1)



Im(x)

L
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Periodic (blue, cyan, green) and nonperiodic (red) trajectories
for the sextic potential

Vir) =2 —52° —4o* + 112° — LL2% — 132

(Separatrix not shown)



T E =16.489 + 10i

V(z) = (z — 1)%(z + 1)%(z — 2)%(z + 2)°

Periodic trajectories (blue, cyan) and nonperiodic trajectory (red)
Separatrix curve (green)



Thanks for listening!
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