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Outline

* Introduction

* Non-Hermitian physics in quasiparticle scattering

— Levinson’s theorem
— Fano Resonance

 Bifurcations and instabilities

— fluxon-dark soliton bifurcation as exceptional point
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Ultra-cold atom experiments
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Harvard 3
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- Andrew Wilson - Nils Kaergard
= Rb - K experiment
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The many-body physics

What is Bose-Einstein condensation (BEC)?
High
= ! o Temperature T:
f thermal velocity v
- K density d*
N T "Billiard balls"

: 2 Low
S A l-

S -,1,\5’\,’“ < X Temperature T:
De Broglie wavelength
rgg=h/mv = T2
"Wave packets"

¥, T=Terit:
) Bose-Einstein
Condensation
lag~d
"Matter wave overlap”

T=0:
Pure Bose
condensate
"Giant matter wave"

Picture credits: Ketterle group

Interactions are typically short range
(van-der Waals) and can be tuned

by exploiting magnetic-field dependent
Fano-Feshbach resonances.
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Superfluid Fermi gas
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diatomic molecules strongly interacting pairs Cooper pairs

Picture credits: Jin group

Topics:

Strongly correlated (quantum) phases
in optical lattice potentials

Artificial gauge potentials
Few-particle (Efimov) physics

Dipolar (long-range, anistropic)
interactions

Macroscopic quantum phenomena
Nonlinear waves



Scattering to probe BECs?

R ( k)reﬂected wave transmitt; wave T ( /C)
—

localised BEC

What can we learn from scattering atoms
identical to the BEC atoms?
Are there interesting coherent effects?

BECs are not created at zero temperature. Thermal
atoms (at low density) would scatter from BEC.

Is quasiparticle scattering different
from single-particle QM scattering theory?

Thursday, 30 June 2011



Theory: Bose-Einstein Condensate (BEC)

@ Bose gas in an external potential

Ty (_)\T}('r k)= [—;—V + Vext(r,t) + / Ui, Ve —r)U (@, f)dr'] W(r,t)
ot
For BECs we may use the classical Interaction becomes a
or mean field (Hartree) approximation: tunable parameter

Gross-Pitaevskii (GP) equation

1% 47
o V2 o Vet (r ) + =

m

ITI—L(T A E—

ot v (7, t)l2] (r,t)

< S-wave scattermg length

The GP equation is a nonlinear Schrodinger equation
It supports dynamically stable and unstable solutions,
soliton solutions, bifurcations, etc.
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Elementary Excitations of the BEC

Time-dependent Gross-Pitaevskii equation

.0 h2 ArasN
Zha¢(rat)={ S v2'|‘V:crap f > |¢|2}

Linearize the time-dependent equation around the
stationary mean field:

O(F, 1) = (P + 6y (7, 1)
S (7,t) = w(F)e™/ M 4 v(7)e /T

This yields the Bogoliubov (RPA) equations
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Scattering of quasiparticles

Bogoliubov equations:

(T 4+ V)u(r) + Vou(r) (e + p)u(r)

(T + Vv(r) + Vou(r) = (—e+ p)v(r)
with the interactions
Vi(r) = Vet (r) + 2772 () %Gy ="N 2

This is a two-channel scattering problem —

Resonances, Levinson Theorem?
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Bogoliubov equations

Need to solve this non-Hermitian eigenvalue problem:

(5 20 (8) (8
with 2

A= _%VQ + Vear(r) — p 4 29[ (r) B = gy(r)?

where ¢ (r) is a solution of the stationary GP equation
2

() = [— 22 £ Voo (1) + gl () e (r)

2m

Properties:
AT = A

1 0 A B\ /1 0o\ ([ A B
0 —1 —-B* —-A o -1 ) \ —-B* —-A
Eigenvalues come in pairs, either real or imaginary,
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Energy Scattering problem
A k2= €+ U
1
) particle scattering

-
- v l'
// trapping—potential

€

Can we learn about bound states by
condensate  taking data from scattering experiments?

Potential scattering (single channel):
Yes, with Levinson’s theorem
(N. Levinson, 1949)
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Enerey  Bogoliubov scattering
} k=¢+ U
|
) particle scattering

-
- M l’
// trapping—potential

Additional solutions of the
Bogoliubov equations
Y by symmetry

condensate
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Levinson's theorem for BECs

reflected wave transmitted e
R(k) o | |ras |>wav T(k)
=
BEC

The transmission amplitude T(k) carries a phase d(k)

T(k) = e 2°W|1T (k)]

Levinson's theorem for BECs:
5(k — 0) — (nb s 1/2)7r

the phase shift at zero momentum is related to the number
of discrete (localised) collective excitations n,

JB, I Haring, and J-M Rost, PRL 91 (2003) 070403
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SC.IENCE 296 (2002) 1290
Formation of a Matter-Wave

Bright Soliton _ _
L. Khaykovich," F. Schreck,’ G. Ferrari,"? T. Bourdel,’ Brlg ht SOI |t0nS

J. Cubizolles,” L. D. Carr," Y. Castin,’ C. Salomon* . .
are supported in BECs with

We report the production of matter-wave solitons in an ultracold lithium-7 gas.

e attractive interactions
(9<0)

e tight wave-guide
geometry: quasi-1D system

MSNG potentiaN A single nonspreading

wave packet (soliton) is
om [ observed

Fig. 3. Absorption im- é 5ms
ages at variable delays
after switching off the
vertical trapping beam
Propagation of an ideal
BEC gas (A) and of a
soliton (B) in the hori-
zontal 10 waveguide in
the presence of an ex-
pulsive potential. Prop-
agation without disper-
sion over 1.1 mm is a
clear signature of a
soliton. Corresponding
axial profiles are inte-
grated over the vertical
direction.

opt. density
%
o

Ty ‘ 2ms
"‘M"M’f‘.’v" ™ /
M\le\""ﬂ"~~ f",. w |
et s et T T e B
A0 Qs 0o

1mm axial position [mm)

opl. density

Similar experiments: R. Hulet (2002) and M. Oberthaler (2004)
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Scatterlng problem with solitons

How robust are solitons?

Gl thermal

_ atoms
Soliton

“ WA Bose-Einstein condensate

Will solitons decay by interacting with single thermal particles?
What happens in the scattering process?

Solitons are quantum objects with the coldest temperatures
ideal for atom optics, interferometry,

gravitational and inertial sensors
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Quasiparticle scattering on soliton

R(k) = 0 T(k)| = 1
—— A =

BEC soliton

Bogoliubov scattering from a bright soliton in the cubic NLS

is reflectionless ! Solitons are transparent

d(xz) =/ N/(2b)h'(‘(?ll2($/b)

A(k)[sech(z/b?) + ikbtanh(z/b) 4 (kb)? — 1]etF*

Up =—
v = A(k)sech(z/b?)e*® ,
_ (kb .
Tk = (1) 1TWI=1

Realistic 3D situation: finite reflection leads to dissipative

motion of soliton in thermal cloud.
S Sinha, AYu Cherny, D Kovrizhin, JB PRL 96, 030406 (2006)
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Resonant scattering

@ In two-channel scattering we sometimes find
resonances of the Fano / Feshbach type,
e.g. in atom-atom scattering

Feshbach / Fano resonance

> T

Can we find similar resonances for
quasiparticles scattering on BECs?

Let’s see. Go lattice ...
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Lattice with nonlinear defect

Consider a BEC in an optical lattice — BEC
confined by attractive (or repulsive) beam

interactions that are only present within O NATYA Y ACTAN
a single well. g n2 n-l B ¥l n32

The appropriate version of the GP equation is the
discrete nonlinear Schrodinger equation (DNLS)

oW
l Y, — _(\Pn+1 + ‘Pn—l) o qu,nclz\yncan,nc

We can find solutions analytically!

Tsironis, Molina, Hennig PRE 50, 2365 (1994)
Thursday, 30 June 2011



Solutions of the defect model

There are two types of solutions: /\/\M
iy
*Extended (linear) waves exist far away from defect °

W, = Ugexpl(ikn)exp(—iE}Lt) "ol B atl n2

They form a band with dispersion

(a)
BEe
E, = —-2cosk, Sotutioes
*Localized solutions decay exponentially

6 - - 0 2
i = g S N ‘ Energy
W, (t) = b,(t) = by 2I" "<l exp(—iEpt) (b) be
0.5

The energies lie outside the linear band O o
PP Lad 2 S 02
r _ y nc-5 nc nc+5 0.1
By = —\/4+ g2 g =bi. (g >0) e m|l m a0
Esy Evw By  Ey Ep Eiy
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Scattering problem

Approach the scattering problem: |
Incoming
*Expand DNLS around localised solution tH> re
\Pn( ) - On( ) + bn( ) - VAT T AT AT

Q’Sn(vt) = U, —iEt + L‘ —1(2Ey—FE')t

BEC

(a)
BEC
. . . . Localized
*Derive discrete Bogoliubov equations Solutions
Ell” = _(un-o-l -+ Un—l) J( Un, + l"nc)dn.nc 6 “a
(QEIJ - E)I"n — _("n +1 + Un, 1) — U(-— e + Up. )'Sn.nc (b)

A.

*Note that there is a localized solution in the decoupled nosb e Ry,

nc-5 nc nc+S

v channel (g u, = 0): —— s
c Esy Ew By
Up = Un. u,ln nel W= —gq + 1 /1 + 92

With energy within the linear band!

—_— Can we expect a Fano resonance
E=FL=2E+ Vit at the local mode energy?

R Vicencio, JB, S Flach, PRL 98, 184102 (2007)

03k
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Fano Blockade

The scattering problem can be solved exactly:

4sink
T(k) = 2 5
4sin’k + (2g + £
V(E,—2E, ) -4-2¢
1
osl A g = ('.30 :
| ‘l e
0.6 A go = 0.6
T : A o
J
0.4 } \ ‘A“_A 4 gs = 0.9 0 n/8 ”1/‘4 In/8 /2
) \ “
02 A ‘,A‘A (a) ]
0 =% At the position of the local mode we

find a reflection (Fano) resonance

R Vicencio, JB, S Flach, PRL 98, 184102 (2007)
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Fano Blockade

The reflection and "9
transmission resonances 0.8 | !
may be useful for \

switching atom beams! “r i \
‘ \ A ~i~:
0.4 | I | PO
8 X v
0.2 - | ' " A -
A A (a)

Numerical simulations
with wavepackets confirm
the results of stationary
scattering theory

Lattice site

R Vicencio, JB, S Flach, PRL 98, 184102 (2007)
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Topological - non-topological
soliton bifurcation
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Josephson vortex (fluxon) in
superconductor

Superconductors —> Magnetic field:
Insulator ——— F % @

* Josephson vortex: identified by a soliton in the relative phase

(b)
2n 0(x)

* One quantum of magnetic flux
A. V. Ustinov, Physica D, 123 (1998)
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Quantum dynamics of a single vortex

A. Wallraff*, A. Lukashenko, J. Lisenfeld, A. Kemp, M. V. Fistul, Y. Koval
& A. V. Ustinov

Physikalisches Institut I1l, Universitdat Erlangen-Niirnberg, D-91058 Erlangen,
Nature 425,155 (2005) """

* Present address: Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA

letters to nature

c I .= d [ | A
\ t
0.2 | i
= /
= < 3
g £ v /
=
2 ~
Q =
P g J
£ goirS = -
s}
0.0 | ] ]
0 T 2x 0 50 100
Vortex coordinate, Voltage, V (uV)
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Quantum tunneling of vortices

@ A vortex in a 2D BEC can tunnel between two
pinning potentials on observable time scales.

O Fialko, AS Bradley, JB, arXiv:1105.5869 (2011)

# Robust superposition state between vortices
can be created in 1D strongly interacting Bose
(Tonks-Girardeau) gas.

DW Hallwood, T Ernst, JB, PRA 82, 062623 (2010)

27
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Double ring under rotation

Vortices can enter the tunnel barrier
between the two rings.

\Q In analogy to long Josephson
junctions we call these “Josephson

vortices” or “rotational fluxons”

Competing effects of

External rotation: favours different
circulation between rings

Tunnel coupling: favours equal
phase across the junction

JB, TJ Haigh, U Zilicke, PRA 80, 011602(R) (2009)
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Multiple Josephson Vortex Solutions

When (L:)o- (L:)i> 1, ground state is lattice of Josephson vortices

0.1 - ' : : 3
eg (/ 'o - <IJ:>|~3
0.075+
xeol? 2
Xi/ / [€)
e —— inner ring Drel [ 21
0.09F | = ==outer ring
11
0.025+
0 ' ' , , 0
0 0.2 0.4 0.6 0.8 1

0/2n
JB, TJ Haigh, U Zilicke, PRA 80, 011602(R) (2009)
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Single fluxon in linear geometry

Two linearly coupled GP equations -T< x
. 1 :
1041 :(—§am + [1]? — )1 — kb )

1

i3t¢2 :(__

233:90 + |Ya]? — w)be — ki

have fluxon solutions for 0 <k < 1/3

lbff/z = v/1+ ktanh(2vkz) + iv1 — 3k sech(2V kx)

or dark soliton solution for k > 1/3

@bl = 2 *=1+/1+ ktanh(v1+k x)

Kaurov, Kuklov, PRA (2005, 2006)

Qadir, Susanto, Matthews, arXiv (2011)
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Fluxon - dark soliton bifurcation

Is the bifurcation point an exceptional point?

« square root branch point at k= 1/3

 encircling the branch
point in the complex
plane interchanges
fluxon with anti-fluxon

« Can this be achieved physically?

*l:TT

—

S E—
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