Convergent Quantum Normal Forms, \mathcal{PT} -symmetry and reality of the spectrum

Emanuela Caliceti

Dresden, 20-25 June 2011

1. Introduction and statement of the results

We address the problem to conjugate \mathcal{PT} symmetric quantum operators with selfadjoint operators through a <u>similarity transformation</u> with the techniques of the Quantum Normal Form (QNF). We provide a class of operators for which the procedure works.

More precisely:

1) We prove the reality of the spectrum of \mathcal{PT} -symmetric non s.a. operators;

2) We obtain an exact quantization formula for the eigenvalues;

3) We determine a similarity transformation that maps the \mathcal{PT} -symmetric operator into a selfadjoint one;

4) We construct the QNF which generates the Classical Normal Form (CNF) for $\hbar = 0$.

(Recent results obtained with S. Graffi)

Step 1

Start with a \mathcal{PT} -symmetric <u>classical</u> Hamiltonian family, expressed in action-angle variables:

$$\mathcal{H}_{\varepsilon}(\xi, x) = \mathcal{L}_{\omega}(\xi) + \varepsilon \mathcal{V}_{\omega}(\xi, x)$$

in $\mathbf{R}^{l} \times \mathbf{T}^{l}, \varepsilon \in \mathbf{R}$, $\mathcal{L}_{\omega}(\xi) := \langle \omega, \xi \rangle$; $\mathcal{P} : x \to -x$; $\mathcal{T} : \underline{\text{complex conjugation}}$ <u>Weyl quantization formula</u> (**WQF**) yields the \mathcal{PT} symmetric, non s.a. operator in $L^{2}(\mathbf{T}^{l})$:

$$H(\varepsilon) = i\hbar \langle \omega, \nabla \rangle + \varepsilon V = L(\omega, \hbar) + \varepsilon V$$

<u>complex</u> holomorphic perturbation of the linear diophantine flow over \mathbf{T}^l , \mathcal{PT} -symmetric.

Step 2

Construct the Operator Quantum Normal Form $(\mathbf{O}-\mathbf{QNF})$ which diagonalizes $H(\varepsilon)$ by means of a similarity transformation:

$$e^{iW(\varepsilon)/\hbar}H(\varepsilon)e^{-iW(\varepsilon)/\hbar} = S(\varepsilon)$$

$$= L(\omega, \hbar) + \sum_{k=0}^{\infty} \varepsilon^k B_k(\hbar)$$

where $[B_k, L] = 0, \forall k$

Step 3

Look for $W(\varepsilon)$ such that $S(\varepsilon)$ is <u>selfadjoint</u>, thus providing a <u>real spectrum</u>.

To this end:

Construct the <u>QNF</u> for the symbols (S-QNF)

to determine $\Sigma(\varepsilon)$, symbol of $S(\varepsilon)$:

$$\Sigma(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k \mathcal{B}_k(\xi, \hbar) , \quad \mathcal{B}_0 = \mathcal{L}_{\omega}(\xi)$$

- Pass from the symbols to the operators through the WQF; in this case, if applied to $\mathcal{B}_k(\xi, \hbar)$, symbol of B_k , it provides an <u>exact quantization</u> <u>formula</u> for the eigenvalues of $H(\varepsilon)$.

More precisely:

(1) The series converges (Graffi-Paul 2011); therefore the eigenvalues are given by:

$$\lambda_n(\hbar, \varepsilon) = \langle \omega, n \rangle \hbar + \sum_{k=1}^{\infty} \mathcal{B}_k(n\hbar, \hbar) \varepsilon^k, \quad n \in \mathbb{Z}^l$$

(2) We prove that each $\mathcal{B}_k(\xi, \hbar)$ is real, thus
each operator $B_k = B_k^*$ is s.a. $\Rightarrow S(\varepsilon) = S(\varepsilon)^*.$
Remark

The unperturbed spectrum is pure point but <u>dense</u>, therefore the <u>standard</u> perturbation theory <u>cannot</u> be applied here; the approach through the Normal Form is necessary. Therefore we provide an <u>explicit construction</u> of the similarity transformation mapping a \mathcal{PT} symmetric operator into a s.a. operator.

Moreover:

(3) $\mathcal{B}_k(\xi, 0) \equiv \mathcal{B}_k(\xi)$ is the *k*-th coefficient of the CNF of the classical Hamiltonian $\mathcal{H}_{\varepsilon}(\xi, x)$:

$$\lim_{\substack{h \to 0 \\ nh \to \xi}} \mathcal{B}_k(nh, h) = \mathcal{B}_k(\xi, 0) = \mathcal{B}_k^c(\xi)$$

integrable system mapped into a <u>real</u> Hamiltonian.

An application to classical mechanics: \mathcal{PT} -symmetric, non-holomorphic perturbations of non-resonant harmonic oscillators Consider the inverse transformation into actionangle variables

$$\mathcal{C}(\xi, x) = (\eta, y) := \begin{cases} \eta_i = -\sqrt{\xi_i} \sin x_i, \\ y_i = \sqrt{\xi_i} \cos x_i, \end{cases} \quad i = 1, \dots, l \end{cases}$$

It is defined only on $\mathbf{R}^l_+ \times \mathbf{T}^l$ and does not preserve the regularity at the origin. On the other hand, \mathcal{C} is an <u>analytic</u>, <u>canonical</u> map between $\mathbf{R}^l_+ \times \mathbf{T}^l$ and $\mathbf{R}^{2l} \setminus \{0, 0\}$.

Then

$$(\mathcal{H}_{\varepsilon} \circ \mathcal{C}^{-1})(\eta, y) = \sum_{s=1}^{l} \omega_s(\eta_s^2 + y_s^2) + \varepsilon(\mathcal{V} \circ \mathcal{C}^{-1})(\eta, y)$$
$$:= \mathcal{P}_0(\eta, y) + \varepsilon \mathcal{P}_1(\eta, y)$$

where for $(\eta,y)\in \mathbf{R}^{2l}\setminus\{0,0\}$

$$\mathcal{P}_1(\eta, y) = (\mathcal{V} \circ \mathcal{C}^{-1})(\eta, y) = \mathcal{P}_{1,R}(\eta, y) + \mathcal{P}_{1,I}(\eta, y),$$

$$\mathcal{P}_{1,R}(\eta, y) = \frac{1}{2} \sum_{k \in \mathbf{Z}^l} (\operatorname{Re} \mathcal{V}_k \circ \mathcal{C}^{-1})(\eta, y) \prod_{s=1}^l \left(\frac{\eta_s - iy_s}{\sqrt{\eta_s^2 + y_s^2}} \right)^{k_s}$$
$$\mathcal{P}_{1,I}(\eta, y) = \frac{1}{2} \sum_{k \in \mathbf{Z}^l} (\operatorname{Im} \mathcal{V}_k \circ \mathcal{C}^{-1})(\eta, y) \prod_{s=1}^l \left(\frac{\eta_s - iy_s}{\sqrt{\eta_s^2 + y_s^2}} \right)^{k_s}$$

Under suitable assumptions on ω and \mathcal{V} (see below) we obtain

Proposition 1

The Birkhoff normal form of $\mathcal{H}_{\varepsilon}$ is <u>real</u> and uniformly convergent on any compact of $\mathbf{R}^{2l} \setminus \{0, 0\}$ if $|\varepsilon| < \varepsilon_0$. Hence the system is integrable.

2. Reminder on Weyl's quantization formula

Let us sum up the canonical (Weyl) quantization procedure for functions (classical observables) defined on the phase space $\mathbf{R}^l \times \mathbf{T}^l$. Let $\mathcal{A}(\xi, x, \hbar)$: $\mathbf{R}^{l} \times \mathbf{T}^{l} \times [0, 1] \to \mathbf{C}$ be a family of smooth phase-space functions indexed by \hbar written under its Fourier representation

$$\mathcal{A}(\xi, x, \hbar) = \int_{\mathbf{R}^l} \sum_{q \in \mathbf{Z}^l} \widehat{\mathcal{A}}_q(p; \hbar) e^{i(\langle p, \xi \rangle + \langle q, x \rangle)} dp$$

Then the (Weyl) quantization of $\mathcal{A}(\xi, x; \hbar)$ is the operator acting on $L^2(\mathbf{T}^l)$, defined by:

 $(A(\hbar)f)(x) :=$ $= \int_{\mathbf{R}^{l}} \sum_{q \in \mathbf{Z}^{l}} \widehat{\mathcal{A}}_{q}(p; \hbar) e^{i(\langle q, x \rangle + \langle p, q \rangle \hbar/2)} f(x + p\hbar) \, dp, \, (12)$

 $\forall f \in L^2(\mathbf{T}^l).$

Remark 1

If $\mathcal{A}(\xi, x; \hbar) = \mathcal{A}_{\omega}(\xi, x; \hbar) = \mathcal{A}(\langle \omega, \xi \rangle, x; \hbar)$ (12) clearly becomes:

$$(A(\hbar)f)(x) = \int_{\mathbf{R}} \sum_{q \in \mathbf{Z}^l} \widehat{\mathcal{A}}_q(p; \hbar) e^{i(\langle q, x \rangle + p \langle \omega, q \rangle \hbar/2)} f(x + p\hbar\omega) \, dp$$

Remark 2

If \mathcal{A} does not depend on ξ , $\mathcal{A}(\xi, x, \hbar) = \mathcal{A}(x, \hbar)$, (12) reduces to the standard <u>multiplicative action</u>: $(\mathcal{A}(\hbar)f)(x)$

$$= \int_{\mathbf{R}^{l}} \sum_{q \in \mathbf{Z}^{l}} \mathcal{A}_{q}(\hbar) \delta(p) e^{i(\langle q, x \rangle + \langle p, q \rangle \hbar/2)} f(x + \hbar p) \, dp$$
$$= \sum_{q \in \mathbf{Z}^{l}} \mathcal{A}_{q}(\hbar) e^{i\langle q, x \rangle} f(x) = \mathcal{A}(x, \hbar) f(x)$$

Remark 3

If \mathcal{A} does not depend on x, then $\widehat{\mathcal{A}}_q = 0, q \neq 0$; thus $\widehat{\mathcal{A}}_0 = \widehat{\mathcal{A}}(p, \hbar)$ and the standard (pseudo) <u>differential action</u> is recovered:

$$(A(\hbar)f)(x) = \int_{\mathbf{R}^l} \widehat{\mathcal{A}}(p,\hbar) f(x+\hbar p) \, dp$$
$$= \int_{\mathbf{R}^l} \sum_{q \in \mathbf{Z}^l} \widehat{\mathcal{A}}(p,\hbar) f_q e^{i\langle q,x+\hbar p \rangle} \, dp = \sum_{q \in \mathbf{Z}^l} f_q \mathcal{A}(q\hbar,\hbar) e^{i\langle q,x \rangle}$$

$$= (\mathcal{A}(-i\hbar\nabla_x,\hbar)f)(x),$$

whence the formula for the spectrum of A:

$$\lambda_n(\hbar) = \langle e_n, Ae_n \rangle = \mathcal{A}(n\hbar, \hbar)$$

Proposition 2

If
$$\exists \rho \geq 0$$
 such that
 $\|\mathcal{A}\|_{\rho} := \sup_{\hbar \in [0,1]} \sum_{q \in \mathbb{Z}^l} e^{\rho |q|} \int_{\mathbb{R}^l} e^{\rho |p|} |\widehat{\mathcal{A}}_q(p,\hbar)| \, dp < +\infty,$
then $A(\hbar)$ is a uniformly bounded operator in
 $L^2(\mathbb{T}^l)$, because:

$$\|A(\hbar)\|_{L^2 \to L^2} \le \|\mathcal{A}\|_{\rho}.$$

3. Assumptions on $\mathcal{H}_{\varepsilon}(\xi, x) = \mathcal{L}_{\omega}(\xi) + \varepsilon \mathcal{V}_{\omega}(\xi, x)$

$$L(\omega,\hbar)\psi = i\hbar\langle\omega,\nabla\rangle\psi$$

 $= -i\hbar [\omega_1 \frac{\partial \psi}{\partial x_1} + \ldots + \omega_l \frac{\partial \psi}{\partial x_l}], \quad \forall \psi \in \mathcal{H}^1(\mathbf{T}^l)$

 $\omega :$ diophantine frequencies, i.e. $\exists \gamma > 0, \ \tau > l\!-\!1 :$

$$|\langle \omega, q \rangle|^{-1} \le \gamma |q|^{\tau}, \quad q \in \mathbf{Z}^l, \ q \neq 0.$$

V: Weyl quantization of $\mathcal{V}_{\omega}(\xi, x)$: $\mathbf{R}^{l} \times \mathbf{T}^{l} \to \mathbf{C}$ s.t.

$$\mathcal{V}_{\omega}(\xi, x) := \mathcal{V}(\langle \omega, \xi \rangle, x); \ \mathcal{V} : \mathbf{R} \times \mathbf{T}^{l} \to \mathbf{C}$$

 $\mathcal{V}(t, x) = \sum_{q \in \mathbf{Z}^{l}} \mathcal{V}_{q}(t) e^{i \langle q, x \rangle}$
Space Fourier transform of $\mathcal{V}_{i}(t)$:

Space Fourier transform of $\mathcal{V}_q(t)$:

$$\widehat{\mathcal{V}}_q(p) := \frac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} \mathcal{V}_q(t) e^{-ipt} dt, \quad p \in \mathbf{R}.$$

Then the Weyl quantization of $\mathcal{V}_\omega(\xi, x)$ is:

$$V_{\omega}f(x) = \int_{\mathbf{R}} \sum_{q \in \mathbf{Z}^l} \widehat{\mathcal{V}}_q(p) e^{i\langle q, x \rangle + \hbar p \langle \omega, q \rangle/2} f(x + \hbar p \omega) \, dp.$$

$\underline{\mathcal{PT}}\text{-symmetry}\ assumptions$

On the classical potential $\mathcal{V}_{\omega}(\xi, x)$:

$$\begin{split} \mathcal{V}_{\omega,-q}(\xi) &= -\mathcal{V}_{\omega,q}(\xi) \in \mathbf{R} \\ \mathcal{V}_{\omega,q}(-\xi) &= \mathcal{V}_{\omega,q}(\xi), \quad \forall (\xi,q) \in \mathbf{R}^l \times \mathbf{T}^l \\ \text{Then: } \hat{\mathcal{V}}_q(-p) &= \hat{\mathcal{V}}_q(p) \in \mathbf{R}, \quad \forall q \quad \text{and} \\ (\mathcal{P}\mathcal{T})\mathcal{V}_{\omega}(\xi,x) &= (\mathcal{P}\mathcal{T})(\sum_{q \in \mathbf{Z}^l} \mathcal{V}_{\omega,q}(\xi)e^{i\langle q,x \rangle}) = \mathcal{V}_{\omega}(\xi,x) \\ \text{Then } V := V_{\omega} \text{ is a } \mathcal{P}\mathcal{T}\text{-symmetric operator in} \\ L^2(\mathbf{T}^l): \end{split}$$

 $(\mathcal{PT})(Vf)(x)$

$$= \int_{\mathbf{R}} \sum_{q \in \mathbf{Z}^{l}} \widehat{\mathcal{V}}_{q}(p) e^{i\langle q, x \rangle - i\hbar p \langle \omega, q \rangle/2} \overline{f}(-x + \hbar p \omega) dp$$

$$= \int_{\mathbf{R}} \sum_{q \in \mathbf{Z}^{l}} \widehat{\mathcal{V}}_{q}(p) e^{i(\langle q, x \rangle + \hbar p \langle \omega, q \rangle/2)} \overline{f}(-x - \hbar p \omega) dp$$

$$= \int_{\mathbf{R}} \sum_{q \in \mathbf{Z}^{l}} \widehat{\mathcal{V}}_{q}(p) e^{i(\langle q, x \rangle + \hbar p \langle \omega, q \rangle/2)} (\mathcal{PT}f)(x + \hbar p \omega) dp$$

 $= V(\mathcal{PT}f)(x).$

Boundedness assumption

(to ensure the uniform convergence of the QNF): $\exists \rho > 1 + 16\gamma \tau^{\tau}$ s.t.

$$\|\mathcal{V}_{\omega}\|_{\rho} := \sum_{q \in \mathbf{Z}^l} e^{\rho|q|} \int_{\mathbf{R}} e^{\rho|p|} |\widehat{\mathcal{V}}_q(p)| \, dp < +\infty,$$

which implies the boundedness of the operator V, since

$$\|V\|_{L^2 \to L^2} \le \|\mathcal{V}_{\omega}\|_{\rho}.$$

Then the symbol of the operator

$$H(\varepsilon) = i\hbar \langle \omega, \nabla \rangle + \varepsilon V$$

is the Hamiltonian family:

 $\mathcal{H}_{\varepsilon}(\xi, x) = \langle \omega, \xi \rangle + \varepsilon \mathcal{V}_{\omega}(\xi, x) = \mathcal{L}_{\omega}(\xi) + \varepsilon \mathcal{V}_{\omega}(\xi, x)$ Moreover: $D(H(\varepsilon)) = \mathcal{H}^{1}(\mathbf{T}^{l})$ and denote $\sigma(H(\varepsilon)) = \{\lambda_{n}(\hbar, \varepsilon) : n \in \mathbf{Z}^{l}\}$ the spectrum of $H(\varepsilon)$.

Main Result

Under the above assumptions, $\exists \varepsilon_0 > 0$

independent of h: for $|\varepsilon| < \varepsilon_0$ the spectrum of $H(\varepsilon)$ is given by the exact quantization formula:

$$\lambda_n(\hbar, \varepsilon) = \langle \omega, n \rangle \hbar + \mathcal{B}(n\hbar, \hbar; \varepsilon), \quad n \in \mathbf{Z}^k$$
 $\mathcal{B}(n\hbar, \hbar; \varepsilon) := \sum_{k=1}^{\infty} \mathcal{B}_k(n\hbar, \hbar) \varepsilon^k \qquad (1)$

where

- **1)** $\mathcal{B}_k(\xi, \hbar) \in C^{\infty}(\mathbf{R}^l \times [0, 1]; \mathbf{R}), \ k = 1, 2, ...$
- **2)** the series (1) converges uniformly w.r.t. $(\xi, \hbar) \in \mathbf{R}^l \times [0, 1];$
- **3)** $\mathcal{B}_k(\xi, 0)$ is the k-th coefficient of the CNF for $\mathcal{H}_{\varepsilon}(\xi, x)$;
- **4)** $\mathcal{B}_k(n\hbar, \hbar)$ is obtained from the WQF applied to $\mathcal{B}_k(\xi, \hbar)$, which is the symbol of the operator B_k , the term of order k of the QNF.

Corollary

The operator $S(\varepsilon)$, similar to $H(\varepsilon)$, is selfadjoint.

The Quantum Normal Form: the formal construction

(We follow Sjöstrand (1991) and Bambusi-Graffi-Paul (1999))

Given $H(\varepsilon) = L(\omega, \hbar) + \varepsilon V$ in $L^2(\mathbf{T}^l)$, look for a similarity transformation, in general <u>non unitary</u> $(W(\varepsilon) \neq W(\varepsilon)^*)$ $U(\omega, \varepsilon, \hbar) = e^{iW(\varepsilon)/\hbar} : L^2(\mathbf{T}^l) \leftrightarrow L^2(\mathbf{T}^l)$, s.t. $S(\varepsilon) := UH(\varepsilon)U^{-1} = L(\omega, \hbar) + \varepsilon B_1 + \varepsilon^2 B_2 + \dots$ $= L(\omega, \hbar) + \sum_{k=1}^{\infty} B_k \varepsilon^k$ (2)

under the requirement:

$$[B_k, L] = 0, \forall k.$$

Recall the formal commutator expansion

$$S(\varepsilon) = e^{iW(\varepsilon)/\hbar} H(\varepsilon) e^{-iW(\varepsilon)/\hbar} = \sum_{k=0}^{\infty} H_k$$

$$H_0 := H(\varepsilon), \quad H_k := \frac{[W(\varepsilon), H_{k-1}]}{i\hbar k}, \qquad k \ge 1$$

Look for $W(\varepsilon)$ in the form of a power series expansion in ε : $W(\varepsilon) = \varepsilon W_1 + \varepsilon^2 W_2 + \dots$

$$S(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k B_k$$
 where

$$B_0 = L(\omega, \hbar); \quad B_k := \frac{[W_k, L]}{i\hbar} + V_k, \qquad k \ge 1,$$

$$V_1 \equiv V$$

$$V_{k} = \sum_{r=2}^{k} \frac{1}{r!} \sum_{\substack{j_{1}+\dots+j_{r}=k\\j_{s}\geq 1}} \frac{[W_{j_{1}}, [W_{j_{2}},\dots, [W_{j_{r}}, L]\dots]]}{(i\hbar)^{r}} + \sum_{r=1}^{k-1} \frac{1}{r!} \sum_{\substack{j_{1}+\dots+j_{r}=k-1\\j_{s}\geq 1}} \frac{[W_{j_{1}}, [W_{j_{2}},\dots, [W_{j_{r}}, V]\dots]]}{(i\hbar)^{r}}$$

 V_k depends on W_1, \ldots, W_{k-1} (not on W_k !), thus we get the recursive homological equations:

$$\frac{[W_k, L]}{i\hbar} + V_k = B_k, \qquad [L, B_k] = 0 \qquad (3)$$

To solve (3) for $S(\varepsilon)$, B_k , W_k , look for their symbols and then apply the WQF. Recall that the symbol of $[F,G]/i\hbar$ is the **Moyal bracket** $\{\mathcal{F},\mathcal{G}\}_M$ of the symbols \mathcal{F} of F and \mathcal{G} of G, where:

$$\{\mathcal{F}, \mathcal{G}\}_{M} \sim \sum_{s=0}^{\infty} (-1)^{s} \hbar^{s} \sum_{r=0}^{2s+1} \frac{(-1)^{r}}{r!(2s+1-r)!}$$
$$\times \left(\frac{\partial^{2s+1}\mathcal{F}}{\partial \xi^{2s+1-r} \partial x^{r}}\right) \left(\frac{\partial^{2s+1}\mathcal{G}}{\partial x^{2s+1-r} \partial \xi^{r}}\right)$$
$$= \{\mathcal{F}, \mathcal{G}\} + O(\hbar^{2}).$$

The above equations become, once written for the symbols: $\Sigma(\varepsilon) = \sum_{k=0}^{\infty} \mathcal{H}_k$

$$\mathcal{H}_0 := \mathcal{L}_\omega + \varepsilon \mathcal{V}, \quad \mathcal{H}_k := \frac{\{\mathcal{W}(\varepsilon), \mathcal{H}_{k-1}\}_M}{k}, \ k \ge 1$$

where
$$\mathcal{W}(\varepsilon) = \varepsilon \mathcal{W}_1 + \varepsilon^2 \mathcal{W}_2 + \dots$$
,
 $\Sigma(\varepsilon) = \sum_{k=0}^{\infty} \varepsilon^k \mathcal{B}_k$ and:
 $\mathcal{B}_0 = \mathcal{L}_\omega = \langle \omega, \xi \rangle;$ $\mathcal{B}_k = \{\mathcal{W}_k, \mathcal{L}\}_M + \mathcal{V}_k, \ k > 1,$
 $\mathcal{V}_1 \equiv \mathcal{V}$
 $\mathcal{V}_k = \sum_{r=2}^k \frac{1}{r!} \sum_{\substack{j_1 + \dots + j_r = k \\ j_s \ge 1}} \{\mathcal{W}_{j_1}, \{\mathcal{W}_{j_2}, \dots, \{\mathcal{W}_{j_r}, \mathcal{L}\}_M \dots\}_M$
 $+ \sum_{r=1}^{k-1} \frac{1}{r!} \sum_{\substack{j_1 + \dots + j_r = k-1 \\ j_s \ge 1}} \{\mathcal{W}_{j_1}, \{\mathcal{W}_{j_2}, \dots, \{\mathcal{W}_{j_r}, \mathcal{V}\}_M \dots\}_M,$
 $k > 1$ (4)

Therefore the symbols \mathcal{W}_k and \mathcal{B}_k of W_k and B_k can be recursively found solving the **homologi**cal equation:

$$\{\mathcal{W}_k, \mathcal{L}\}_M + \mathcal{V}_k = \mathcal{B}_k, \qquad k = 1, \dots$$
 (5)
under the condition: $\{\mathcal{L}, \mathcal{B}_k\}_M = 0.$ (6)
Here:

 $\mathcal{W}_k = \mathcal{W}_k(\xi, x; \hbar), \ \mathcal{V}_k = \mathcal{V}_k(\xi, x; \hbar), \ \mathcal{B}_k = \mathcal{B}_k(\xi, x; \hbar).$ Notice that (6) is satisfied if $\mathcal{B}_k = \mathcal{B}_k(\xi; \hbar)$ does not depend on x.

Since
$$\mathcal{L} = \mathcal{L}(\xi) = \langle \omega, \xi \rangle$$
 is linear in ξ :
 $\{\mathcal{W}_k, \mathcal{L}\}_M = \{\mathcal{W}_k, \mathcal{L}\} = -\langle \nabla_x \mathcal{W}_k, \omega \rangle$,
(5) becomes

$$-\langle \nabla_x \mathcal{W}_k(\xi, x), \omega \rangle + \mathcal{V}_k(\xi, x) = \mathcal{B}_k(\xi)$$
(7)

In terms of the Fourier coefficients of $\mathcal{W}_k(\xi,x) = \sum_{q \in \mathbf{Z}^l} \mathcal{W}_{k,q}(\xi) e^{i\langle q,x\rangle} \text{ and }$

$$\mathcal{V}_k(\xi, x) = \sum_{q \in \mathbf{Z}^l} \mathcal{V}_{k,q}(\xi) e^{i \langle q, x \rangle}$$
 (7) becomes:

$$-i\sum_{q\neq 0} \langle k,\omega \rangle \mathcal{W}_{k,q}(\xi) e^{i\langle q,x \rangle} + \sum_{q \in \mathbf{Z}^l} \mathcal{V}_{k,q}(\xi) e^{i\langle q,x \rangle} = \mathcal{B}_k(\xi)$$

whence

$$\mathcal{B}_k(\xi) = \mathcal{V}_{k,0}(\xi), \quad \mathcal{W}_{k,q}(\xi) = \frac{\mathcal{V}_{k,q}(\xi)}{i\langle q, \omega \rangle}, \quad \forall k \neq 0.$$

For
$$k = 1$$
 we have $(\mathcal{V}_1 \equiv \mathcal{V} = \mathcal{V}_\omega)$
 $\mathcal{B}_1(\xi) = \mathcal{V}_{\omega,0}(\xi) \in \mathbf{R}$ and

$$\mathcal{W}_{1,q}(\xi) = \frac{\mathcal{V}_{\omega,q}(\xi)}{i\langle q,\omega\rangle} \in i\mathbf{R}, \ q \neq 0$$
 (p. imaginary).

We can choose $\mathcal{W}_{1,0} = 0$

Assume:

 $(\mathbf{A}_1) \quad \mathcal{V}_{j,q}(\xi) \in \mathbf{R}, \quad \forall j = 1, \dots, k-1, \ \forall q \in \mathbf{Z}^l;$

 $(\Rightarrow \mathcal{W}_{j,q}(\xi) = \frac{\mathcal{V}_{j,q}(\xi)}{i\langle q,\omega \rangle} \in i\mathbf{R} \text{ and } \mathcal{B}_j(\xi) = \mathcal{V}_{j,0} \in \mathbf{R})$

(A₂) We can choose $W_{j,0} = 0, \forall j = 1, ..., k-1$. <u>Then:</u>

 $\begin{aligned} &(\mathbf{R}_1) \quad \mathcal{V}_{k,q}(\xi) \in \mathbf{R}, \; \forall q \in \mathbf{Z}^l; \\ &(\Rightarrow \mathcal{W}_{k,q}(\xi) = \frac{\mathcal{V}_{k,q}(\xi)}{i\langle q, \omega \rangle} \in i\mathbf{R} \; \text{ and } \; \mathcal{B}_k(\xi) = \mathcal{V}_{k,0} \in \mathbf{R}) \end{aligned}$

(**R**₂) We can choose $W_{k,0} = 0$.

Sketch of the proof

(A) Let $f(\xi, x) = \sum_{q \in \mathbf{Z}^l} f_q(\xi) e^{i\langle q, x \rangle}$ and $g(\xi, x) = \sum_{q \in \mathbf{Z}^l} g_q(\xi) e^{i\langle q, x \rangle}$ have real Fourier coefficients: $f_q(\xi), g_q(\xi) \in \mathbf{R}, \ \forall q \in \mathbf{Z}^l$.

Then, $\{f,g\}_M$ has purely imaginary Fourier coefficients:

$$\{f,g\}_{M} \sim \sum_{s=0}^{\infty} (-1)^{s} \hbar^{s} \sum_{r=0}^{2s+1} \frac{(-1)^{r}}{r!(2s+1-r)!}$$
$$\times \left(\frac{\partial^{2s+1}f}{\partial\xi^{2s+1-r}\partial x^{r}}\right) \left(\frac{\partial^{2s+1}g}{\partial x^{2s+1-r}\partial\xi^{r}}\right)$$
(8)

Each derivative w.r.t. x generates a factor i in the Fourier coefficients; so in each summand in (8) we can factor $(i)^{2s+1} = (-1)^s i$.

Thus, in

$$\begin{aligned} \mathcal{V}_{k} &= \sum_{r=2}^{k} \frac{1}{r!} \sum_{\substack{j_{1}+\ldots+j_{r}=k\\j_{s}\geq 1}} \{\mathcal{W}_{j_{1}}, \{\mathcal{W}_{j_{2}},\ldots,\{\mathcal{W}_{j_{r}},\mathcal{L}\}_{M}\ldots\}_{M} \\ &+ \sum_{r=1}^{k-1} \frac{1}{r!} \sum_{\substack{j_{1}+\ldots+j_{r}=k-1\\j_{s}\geq 1}} \{\mathcal{W}_{j_{1}}, \{\mathcal{W}_{j_{2}},\ldots,\{\mathcal{W}_{j_{r}},\mathcal{V}\}_{M}\ldots\}_{M}, \end{aligned}$$

we first factor $(i)^r$ from the coefficients of each \mathcal{W}_{j_s} , then each Moyal bracket generates another factor i. So the coefficients of \mathcal{V}_k can be written as the product of a real term $a_{k,q}(\xi)$ times $(i)^{2r}$:

$$\mathcal{V}_{k,q}(\xi) = (i)^{2r} a_{k,q}(\xi) = (-1)^r a_{k,q}(\xi) \in \mathbf{R}$$

(B) The uniform convergence in (ξ, \hbar) of the S-QNF ensures that also the O-QNF converges and, since $\Sigma(\varepsilon)$ is real, that $S(\varepsilon)$ is selfadjoint and the exact quantization of the eigenvalues.

(C) <u>Moreover</u>, since $\mathcal{V}_{\omega}(\xi, x)$ is odd in x: $\mathcal{V}_{\omega}(\xi, -x) = -\mathcal{V}_{\omega}(\xi, x)$, we get $\mathcal{B}_{2k+1} = 0, \forall k$; thus,

$$\Sigma(\varepsilon) = \mathcal{B}(\xi; \hbar) = \mathcal{L}_{\omega}(\xi) + \varepsilon^2 \mathcal{B}_2(\xi) + \varepsilon^4 \mathcal{B}_4(\xi) + \dots$$

Indeed:

let \mathcal{M} denote the set of functions $f : \mathbf{T}^l \to \mathbf{C}$ with a definite parity (either even or odd) and $\forall f \in \mathcal{M}$ define

$$Jf = \begin{cases} +1, & \text{if } f \text{ is even}, \\ \\ -1, & \text{if } f \text{ is odd}. \end{cases}$$

Then $J{f,g}_M = -(Jf)(Jg)$ and one easily obtains:

 $J\mathcal{V}_k = (-1)^k$; $J\mathcal{W}_k = (-1)^{k+1}$, whence $J\mathcal{V}_{2k+1} = -1$ and $\mathcal{B}_{2k+1} = \mathcal{V}_{2k+1,0} = 0$.

Recovery of the CNF for $\hbar = 0$

Consider the asymptotic expansion of $\mathcal{W}(\xi, x; \hbar)$, $\mathcal{B}(\xi; \hbar), \ \mathcal{V}(\xi, x; \hbar)$ in powers of \hbar at $\hbar = 0$:

$$\mathcal{W}_k(\xi; x; \hbar) \sim \sum_{j=0}^{\infty} \mathcal{W}_k^{(j)}(\xi, x) \hbar^j$$

 $\mathcal{B}_k(\xi; \hbar) \sim \sum_{j=0}^{\infty} \mathcal{B}_k^{(j)}(\xi) \hbar^j$
 $\mathcal{V}_k(\xi; x; \hbar) \sim \sum_{j=0}^{\infty} \mathcal{V}_k^{(j)}(\xi, x) \hbar^j.$

The principal symbols

$$w_k := \mathcal{W}_k^{(0)}, \ b_k = \mathcal{B}_k^{(0)}, \ v_k = \mathcal{V}_k^{(0)}$$

coincide with the coefficients of order k of the CNF generated by the Hamiltonian family $\mathcal{H}_{\varepsilon}(\xi, x) = \mathcal{L}_{\omega}(\xi) + \varepsilon \mathcal{V}_{\omega}(\xi, x).$

In fact, the recursive homological equations:

$$\{\mathcal{W}_k, \mathcal{L}\}_M + \mathcal{V}_k = \mathcal{B}_k, \qquad \{\mathcal{L}, \mathcal{B}_k\}_M = 0, \quad k = 1, \dots$$

evaluated at $\hbar = 0$ become:

$$\{w_{k}, \mathcal{L}\}+v_{k} = b_{k}, \qquad \{\mathcal{L}, b_{k}\} = 0, \qquad \nu_{1} \equiv v \equiv \mathcal{V}$$

$$v_{k} = \sum_{r=2}^{k} \frac{1}{r!} \sum_{\substack{j_{1}+\ldots+j_{r}=k\\j_{s}\geq 1}} \{w_{j_{1}}, \{w_{j_{2}}, \ldots, \{w_{j_{r}}, \mathcal{L}\} \ldots\}$$

$$+ \sum_{r=1}^{k-1} \frac{1}{r!} \sum_{\substack{j_{1}+\ldots+j_{r}=k-1\\j_{s}\geq 1}} \{w_{j_{1}}, \{w_{j_{2}}, \ldots, \{w_{j_{r}}, v\} \ldots\}$$
(9)

This is exactly the recurrence defined by **canon**ical perturbation theory. Indeed:

Look for an ε -dependent family of smooth canonical maps $\Phi_{\varepsilon} : \mathbf{R}^{l} \times \mathbf{T}^{l} \leftrightarrow \mathbf{R}^{l} \times \mathbf{T}^{l}$, $(\xi, x) \mapsto (\eta, y) = \Phi_{\varepsilon}(\xi, x)$ such that $\mathcal{H}_{\varepsilon} \circ \Phi_{\varepsilon}^{-1}(\xi, x) = \mathcal{L}(\xi) + \varepsilon b_{1}(\xi) + \varepsilon^{2} b_{2}(\xi) + \dots$ (10) Look for Φ_{ε} as the time 1 flow of a smooth Hamiltonian family $w_{\varepsilon}(\xi, x)$:

generating function. Then

$$\mathcal{H}_{\varepsilon} \circ \Phi_{\varepsilon}^{-1}(\xi, x)$$

$$= \mathcal{H}_{\varepsilon}(\xi, x) + \sum_{s=1}^{\infty} \{ w_{\varepsilon}^{(1)}, \{ w_{\varepsilon}^{(2)}, \dots \{ w_{\varepsilon}^{(s)}, \mathcal{L} \} \dots \} \quad (11)$$
where $w_{\varepsilon}^{(r)} = w_{\varepsilon}, \forall r = 1, 2, \dots$ If we set
 $w_{\varepsilon} = \varepsilon w_1 + \varepsilon^2 w_2 + \dots$

and equate (10) and (11) we obtain

$$b_k := \{w_k, \mathcal{L}\} + v_k, \quad k \ge 1, \ v_1 \equiv v \equiv \mathcal{V}$$
$$v_k = \sum_{\substack{r=2\\r=2}}^k \frac{1}{r!} \sum_{\substack{j_1 + \dots + j_r = k\\j_s \ge 1}} \{w_{j_1}, \{w_{j_2}, \dots, \{w_{j_r}, \mathcal{L}\} \dots\}$$
$$+ \sum_{\substack{r=1\\r=1}}^{k-1} \frac{1}{r!} \sum_{\substack{j_1 + \dots + j_r = k-1\\j_s \ge 1}} \{w_{j_1}, \{w_{j_2}, \dots, \{w_{j_r}, v\} \dots\}$$

Condition $\{\mathcal{L}, b_k\} = 0$ follows from the fact that both $\mathcal{L}(\xi)$ and $b_k(\xi)$ do not depend on x.