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1. Introduction and statement of the results

We address the problem to conjugate P7 sym-
metric quantum operators with selfadjoint op-

erators through a similarity transformation with

the techniques of the Quantum Normal Form
(QNF). We provide a class of operators for
which the procedure works.

More precisely:

1) We prove the reality of the spectrum of P7-
symmetric non s.a. operators;

2) We obtain an exact quantization formula for
the eigenvalues;

3) We determine a similarity transformation
that maps the P7-symmetric operator into a

selfadjoint one;



4) We construct the QNF which generates the

Classical Normal Form (CNF) for h = 0.

(Recent results obtained with S. Graffi)
Step 1

Start with a P7-symmetric classical Hamiltonian

family, expressed in action-angle variables:

He(€,x) = Lu(€) + V(€ @)

in R xTheeR, L6 = (w,&):

P: x— —x 7: complex conjugation

Weyl quantization formula (WQF) yields the P7-

symmetric, non s.a. operator in L2(Tl) ;

H(e) =ih{w,V)+eV = L(w,h) + eV

complex holomorphic perturbation of the linear

diophantine flow over T!, PT-symmetric.



Step 2
Construct the Operator Quantum Normal Form
(O-QNF) which diagonalizes H(e) by means of

a similarity transformation:

GiW(g)/TLH(EI)G_iW(g)/TL = S(¢)

= L(w, k) + X732 e* By, (R)
where  [Bg,L] = 0, Vk
Step 3

Look for W (e) such that S(e) is selfadjoint, thus

providing a real spectrum.

To this end:

- Construct the QNF for the symbols (S-QNF)

to determine X (e), symbol of S(e):

0@

S(e) =Y "Bu(e,R), Bo= Lu(€)
k=0



- Pass from the symbols to the operators through
the WQF; in this case, if applied to By(&, h),

symbol of By, it provides an exact quantization

formula for the eigenvalues of H(e).

More precisely:
(1) The series converges (Graffi-Paul 2011);
therefore the eigenvalues are given by:

0. @)
An(F,e) = (w,n)hi+ Y Byp(nh,h)e*, ncZ
k=1

(2) We prove that each Bi (&, R) is real, thus
each operator By = Bj is s.a. = S(e) = S(e)*.
Remark

The unperturbed spectrum is pure point but

dense, therefore the standard perturbation the-

ory cannot be applied here; the approach through

the Normal Form is necessary.




Therefore we provide an explicit construction of

the similarity transformation mapping a P7 sym-
metric operator into a s.a. operator.

Moreover:

(3) BL(£,0) = Bi(&) is the k-th coefficient of the
CNF of the classical Hamiltonian H:(&, x):
lim By(nfi, Ti) = By(&,0) = Bi(&)

nh—&
integrable system mapped into a real Hamilto-

nian.

An application to classical mechanics:
PT-symmetric, non-holomorphic perturba-

tions of non-resonant harmonic oscillators



Consider the inverse transformation into action-

angle variables

Ny — _\/giSin Ly,

C(&z)=(ny) = i=1,...

y; = V& Cos;,

It is defined only on RlJr x T! and does not pre-
serve the regularity at the origin. On the other

hand, C is an analytic, canonical map between

R! x T' and R4\ {0,0}.

T hen

l
(HeoC™ N (m,9) = 3 ws(mZ2+y2)+e(VoC™ 1) (1, )

s=1

L= 730(777 y) + 5:7)1 (777 y)

where for (n,y) € R%\ {0, 0}

P1(n,y) = (VoC (1, y) = P1 r(, v)+P1.1(n,v),



ks

1 _ l Ns — 1Y
P1er(:Y) = 3 Y (ReVioC Y (n,v) 1 82 82
keZ! s=1 \/?73 + s

ks

l :

P1.1(n,y) =% S AmVgeC N () 1 7782_ ZySQ
keZ! s=1 \/773 + Y5

Under suitable assumptions on w and V (see be-

low) we obtain

Proposition 1

The Birkhoff normal form of Hg is real and uni-

formly convergent on any compact of R%/\ {0, 0}

if le| < eg. Hence the system is integrable.

2. Reminder on Weyl’'s quantization for-

mula

Let us sum up the canonical (Weyl) quantization

procedure for functions (classical observables)

defined on the phase space R! x TV,



Let A(¢,z,R) : Rl x T x [0,1] — C be a family
of smooth phase-space functions indexed by h

written under its Fourier representation

A€ e, B = [ 37 Ag(p; el P €+ gy
R qeZ!

Then the (Weyl) quantization of A(&,x; h) is the

operator acting on L2(T!), defined by:

(A(R) f)(x) =
— /Rl S Ay(p; B Uam)TPaR/2) £ (2 4ph) dp, (12)
qgeZ!
VI e L2(TH.
Remark 1

If A(¢,z;h) = Aw(§, 2 ) = A((w,§),z; )

(12) clearly becomes:



(A(R) f)(z)
— /R 3 A, (p; R)etla2)+pw.a)h/2) £ 4 nFw) dp

q€Z!

Remark 2
If A does not depend on &, A(&,z,h) = A(x, h),

(12) reduces to the standard multiplicative action:

(A(R) f)(z)

= [} 3 Ag(ms(p)e o)+ wat/2) (o 4 Tip) dp

qeZ!

= Y AP f () = Ale, ) f ()

qEZ!

Remark 3
If A does not depend on z, then flq = 0,q # 0;
thus Ay = A(p,%) and the standard (pseudo)

differential action is recovered:




(AMN@) = | Ap, )f( + Tip) dp

= [, > AW W) feel @ ap = 30 [ A(gh, Bl
R qeZ! qeZ!

= (A(—ihVz, B) ) (z),

whence the formula for the spectrum of A:

)\n(h) — <€n, A€n> — A(nh, TL)
Proposition 2

If 4p > 0 such that

| Allp = _sup 37 erldl [ et Ag(p, B)|dp < +o0,
TLE [071] q6Zl Rl

then A(h) is a uniformly bounded operator in

L2(TY), because:

AR 2 2 < [IAllp-



3. Assumptionson H:(&,z) = Lu(&§)+eVu (€, )
L(w, h)y = ih{w, V)
= —ih[wlg—;ﬁ + ..+ wl%], vep € H1(TY)

w: diophantine frequencies, i.e. 3y >0, 7 > [—1:

(o, )"t <Aldl", q€Z g#0.

V: Weyl quantization of V,(&,z) : Rl x T! — C

S.t.

Vo€, z2) = V((w,€),z); V:Rx T - C
V(t,z) = quzl Vq(t)€i<Q,a:>

Space Fourier transform of Vy(t):

. _ 1 i

Vo(p) = = [ Va®e ™at, peR
Then the Weyl quantization of V,(§,x) is:

Vof(@) = [ Va(p)e! @ HTw0/2 (o4 Tipus) dp.

qEZ!



PT-symmetry assumptions

On the classical potential V, (&, x)

Vw,—q(ﬁ) — _Vw,q(g) € R

V(=€) = Vuq(€), V(& q) € REx T
Then: Vg(—p) =Vy(p) €R, Vg and

(PT)Vu(&,2) = (PT)( Y. Vi g(£)e!?)) = V(¢ z)

qgeZ!
Then V = V, is a P7-symmetric operator in
L2(TYH:
(PT)(V f)(x)

= /R > Vo(p)ellen =i a) /2 (g + Fipw) dp

qeZ!

= [ X Vap)el oD F(—z — Fipuo) dp
qgeZ!

_ /R 3 f;q(p)ei(@@)-l-ﬁp(wmﬁ)(pjf)($+ﬁpw) dp

qeZ!

= V(PTf)(x).



Boundedness assumption

(to ensure the uniform convergence of the QNF):

dp > 14 16477 s.t.

Vallpi= 3 e [ efPlVy(p)|dp < +oc.
qeZ!

which implies the boundedness of the operator

V', since

||V||L2_>L2 < ||Vw||p-

Then the symbol of the operator
H(e) =ih{w,V) + eV

IS the Hamiltonian family:

He(§,x) = (w, &) + V(€ ) = Lu(§) + V(€ z)
Moreover: D(H(e)) = H1(T!) and denote
o(H(e)) = {M(h,e) : neZ'}

the spectrum of H(e).



Main Result
Under the above assumptions, deg > O

independent of h: for |e| < eg the spectrum of

H(e) is given by the exact quantization formula:

A (T, e) = (w,n)h + B(nh,he), neZ

B(nh, he) = ioj Bi(nh, h)e" (1)
where =
1) BL(&,R) € C®(R! x [0,1]:R), k=1,2,...
2) the series (1) converges uniformly w.r.t. (¢, h) €
R! x [0,1];
3) B(&,0) is the k—th coefficient of the CNF
for He(€,x);
4) Bi.(nh,h) is obtained from the WQF applied
to Bi(&, h), which is the symbol of the operator

By, the term of order k of the QNF.



Corollary

The operator S(e), similar to H(e), is selfadjoint.

The Quantum Normal Form: the formal
construction

(We follow Sjostrand (1991) and Bambusi-Graffi-
Paul (1999))

Given H(e) = L(w,R) + eV in L2(TY), look for a
similarity transformation, in general non unitary
(W(e) #=W(e)¥)

U(w,e,h) = eWE)/ . 12(7)) 5 12(TY), s.t.

S(e):=UHE)U = L(w,R)+eB1 +e°Br+ ...

= L(w, h) + 22| Byek (2)

under the requirement:

[Bk:7 L] — O, VEk.



Recall the formal commutator expansion

S(e) = ezW(s)/TLH(e)e—zW(s)/TL Z H,

WE.Hial
1hk

HO L= H(E), Hk -

Look for W(e) in the form of a power series
expansion in e:  W(e) =Wy 4+ 2Wo + .. ..

Then (2) becomes:

S(e) = i ekBk

k=0
where
Wi, L
Bo = L(w, h); Bk:::[ k-}% ]+Vk7 kE>1,
(/
k
1 (W Wi, ..., [W: ,L]...]
V. — < J1o LYWV gos - LV g,
PE L 2 (iR)"

.].

(¢h)"

v Wi W WG V-



Vi, depends on Wq,...,Wir_1 (not on W.!), thus

we get the recursive homological equations:

(W, L]
1h

To solve (3) for S(g), By, Wy, look for their sym-

+ Vi, = By, [L,Br] =0 (3)

bols and then apply the WQF. Recall that the
symbol of [F,G]/ih is the Moyal bracket {F, G},

of the symbols F of F' and G of G, where:

28-'-1 (_1)fr

{F,G}m ~ Sgo(—l)shs ;::O rl(2s+ 1 —r)!

828+1F aQs—l—lg
X (85284—1—7’6337') (8$23+1_T8§T>
= {F,G} + O(®?).

The above equations become, once written for

the symbols: >(g) = >392 5 Hy

W(e), Hi—1}m k> 1
k

Ho := Lo +eV, Hy:=



where W(e) = eWy +e2Wo + ..,

@)
(&)= ) 5k8k and:
k=0

BO:‘C’U}:<W7€>; Bk:{wlm‘C}M_l_Vka k > 17

k
1
Vk: Z _I Z {lea{wjga---7{er7£}M°--}M
r=2"" j1+..+jr=k
Jjs=>1

k—1 1
+ Z 1 Z {W]]_?{WjQ??{W]r?V}M}M?

r=1"" j1+..+jr=k-1

Jjs>1

k> 1 (4)

Therefore the symbols W, and B;, of W, and B,
can be recursively found solving the homologi-

cal equation:

Wk, LYy + Vi = B, k=1,... (5)

under the condition: {L, B} = 0. (6)

Here:



Wi = Wi(&§ z h), Vi = V(&2 h), By = B(&, @) h).
Notice that (6) is satisfied if B, = Br(&; h) does
not depend on =z.

Since £L = L(§) = (w,&) is linear in &:

Wik Ly = AWk, L} = —(VaWy, w),

(5) becomes

—(VaWi(§,2),w) + Vi (&, ) = B(§) (7)
In terms of the Fourier coefficients of

Wk(ga x) — quzl Wk,q(§)€i<q’x> and

Vi€, 2) = X ezt Vi g(£)e!l%7)  (7) becomes:

=i > (kW)W g ()€ 0P+ 37 V(e = By(¢)
q7=0 qeZ!

whence

Br(§) = Vi o(€), Wi e(8) = Viglt)

i{q,w)

. Vk#£D0.



For k=1 we have (V1 =V =V,)

B1(§) = V,,0(§) € R and

Vi,q(€)

Wl,q(’f) z(q >

€ iR, ¢ 20 (p. imaginary).

We can choose W; g =0

Assume:

(A1) V(O €eR, Vj=1,....,k—1,VqeZ,

(= Wig(&) = 72 € iR and B;(€) = Vjo € R)

(A2) We can choose W;o =0, Vj=1,...,k—1.
Then:

(R1) Vi q(8) €R, Vg e Z),

(= Wig(€) = 549 ¢ iR and B,(€) = V0 € R)

(R2) We can choose W o = 0.



Sketch of the proof

(A) Let  f(&2) =Y fi(&)e"?®)  and
qgeZ!
g(&,z) = ) gq(fg)ei(q’a"> have real Fourier co-
qgeZ!
efficients: £,(€),94(¢) € R, Vq € Z.

Then, {f, g}y has purely imaginary Fourier co-

efficients:
28+1 (_1)r

{f, 9} ~ Sgo(_l)shs TEZ:O rl(2s+1—r)!

y @28+1f aZs—I—lg (8)
8523+1—7’axr 8x28+1—ra£7“

Each derivative w.r.t. x generates a factor 7 in

the Fourier coefficients; so in each summand in

(8) we can factor (3)251t1 = (—1)5;.



Vi=3 5 Y Wi W W L S

1’)“. o+ ;—k 1{Wj17{wj2""’{WjWV}M"'}M)
" . mjsérl_ B

we first factor (¢)" from the coefficients of each

W;,, then each Moyal bracket generates another

factor :. So the coefficients of V. can be written

as the product of a real term ay, ,(£) times ()2

Vk,q(g) — (i)zrak,q(g) — (_1)Tak,q(£) cR
(B) The uniform convergence in (&£, h) of the
S-QNF ensures that also the O-QNF converges

and, since > (e) is real, that S(e) is selfadjoint

and the exact quantization of the eigenvalues.



(C) Moreover, since V,(&, ) is odd in x:

Vo€, —z) = —Vu(&,x) , we get Bopy1 = 0,Vk;

thus,

() = B(&; h) = Lo(€) +2Bo(€) +e*Ba(6) +. ..

Indeed:
let M denote the set of functions f : T! — C
with a definite parity (either even or odd) and

Vf e M define

+1, iff iseven,
Jf =
—1, iffisodd.

Then J{f,g9}py = —(Jf)(Jg) and one easily ob-
tains:
JV, = (=DF  Jw, = (-1)k*T1 whence

JVop4+1 = —1 and Bppi1 = Vo410 =0.



Recovery of the CNF for h =0
Consider the asymptotic expansion of W(§, z; h),

B(&;h), V(E x; R) in powers of i at o = O:

Wi(&; z;, h) ~ Z W;gj)(&fv)ﬁj

j=0

Br(& ) ~ S BY ()R
j=0

Ve(&z ) ~ Y V(g 2Rl
=0

The principal symbols

wy, =W b = B0 4, = VO

coincide with the coefficients of order k£ of the
CNF generated by the Hamiltonian family
He(€, ) = Lu(€) +eVw(E, ).

In fact, the recursive homological equations:

{Wk,E}M—FVk — Bk7 {ﬁ,Bk}M — O, k = 1, ...



evaluated at A = 0 become:

{wk7£}+vk = by, {ﬁ’a bk} =0, V1 ="
o1
rl

V

2,,,. Z {wj]_7{wj27'"7{wjr,£}...}
' . sz{T

V. —

k—1 1

-+ Z — Z {wjl,{wjz,...,{'wjr,'v}...} (9)
r=1"" j1+..+jr=k-1
Js=>1

This is exactly the recurrence defined by canon-
ical perturbation theory. Indeed:

Look for an e-dependent family of smooth canon-
ical maps &, : R! x T! « R! x T!,

(£7m) — (n,y) == Cl)g(f,x) such that

HeodZ 1€, 2) = L(€)+ebi (€)+e2bo(€)+...  (10)

Look for . as the time 1 flow of a smooth

Hamiltonian family w:(&,x):



generating function. Then
He o Cbe_l(f, 517)

= He(€, )+ i (i wl? e oy (1)

s=1

where w'™ = we, Vr = 1,2,.... If we set

we = ewq + e2wo + . ..

and equate (10) and (11) we obtain

b :={w, LY+ v, k21, v1=v=V
ko1
V = _I Z {wjl,{ij,...,{wjr,/l}...}
r=2"" ji+..+ir=k
Jjs=1
k=1 4

Z {wjl,{ij,...,{wjr,v}...}

r=1"" ji+..+jr=k-1
Jjs=>1

Condition {£,b.} = 0 follows from the fact that

both L£(£) and b,(£) do not depend on .



