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© Bose-Einstein condensates
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@ Condensates with long-range interactions
@ Collapse of a condensate

e A nonlinear variant of exceptional points
@ Variational ansatz for solving the extended Gross-Pitaevskii equation
with an attractive 1/r interaction
@ A collapse, a bifurcation and an exceptional point
@ Confirmation with numerically exact solutions to the
Gross-Pitaevskii equation
@ Exceptional surface in dipolar Bose-Einstein condensates

© Summary and outlook



Reminder: Bose-Einstein condensation

Predicted by Satyendra Nath
Bose and Albert Einstein
1924

When the thermal de Broglie
wavelength becomes of the
order of the interparticle
distance, bosons begin to
“condense” into their ground
state. All bosons have the
same energy and quantum
characteristics, similar to the
way all photons in a laser
share the same quantum
state.

High
Temperature T:
thermal velocity v

density d3
"Billiard balls"

Low
Temperature T:
De Broglie wavelength
hag=himy = T2
"Wave packets"

T=Teit:
Bose-Einstein
Condensation

tag=d
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Experimental realisation

BEC in 87Rb by Wieman et al. 1995 BEC in 23Na by Ketterle et al. 1995
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e External potential U(r)
@ Two-body interaction potential V (v, r’)

@ Zero-temperature bosonic ground state: ¥ = Hfil ¥(r;)
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Nonlinear Schrédinger equation!



o External trapping potential to confine the condensate:

m

U(r) = 5 (wiz® + wiy® + w22?)

@ Short-range two-body contact interaction (s-wave scattering
interaction with scattering length a):

2
b =

@ For N> 1 [i.e. (N — 1) = N]: macroscopic wave function

U(r,t) = VN(r,t):




Experimental realisation of a dipolar BEC:

e Pfau et al., PRL 94, 160401 (2005)
e chromium (°2Cr)

@ large magnetic moment: pu = 6up
@ The interaction is

e long-range
@ anisotropic




BEC with long-range monopolar interaction

Proposal: D.O. O'Dell, et al., PRL 84, 5697 (2000)

o laser induced dipole-dipole interaction

@ 6 “triads’ of intense off-resonant laser
beams

@ 1/r% in the near-zone limit averages

out
@ gravity-like interaction (“monopolar
atoms”):
atriad ! u
Vu(r,r') = ———
u( ) ) |7‘ _ 7‘,|

o Novel physical feature: self-trapping of the condensate, without
external trap.

@ Theoretical advantage: For self-trapping analytical variational
calculations are feasible. These will serve as a guide for
investigations of more complex situations and condensates.



Scattering length a
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a > 0: repulsive, a < 0: attractive interaction




Collapse of a condensate at a critical scattering length

Donley et al., Nature 412, 295 Koch et al., Nature Physics 4, 218
(2001): Collapse of a ®Rb BEC (2008): Collapse of a 52Cr BEC
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Gross-Pitaevskii equation for a BEC with 1/r-interaction

@ Time-independent extended Gross-Pitaevskii equation with radially
symmetric trap in appropriate “atomic units':

e (r) A, + 27%2 + N<87ra lp(r)|?

/d3 /||’(/}( )/|)‘|w(7,)

(N7,N2%a,v/N?,e/N> N73/%p)  —  (r,a,7,,9)

@ Scaling property:

@ Remaining parameters: v, a

o Case of self-trapping: 4 = 0, i.e. there is only one parameter

Self-trapping condensate

U(r) = [Ar + <8wa¢<r>| 2 fer 00 )N w(r)




A variational solution for a BEC with 1/r-interaction

E(k)

@ Variational method: minimisation of the mean field energy:

Bl = [ vt () (-2 + dmafu(r)l

k
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@ Trial wave function:

$(r) = Aexp ("“2)

@ Solution:

1 /n1 8
= o a1+ —a-1
ki 2\f2a< T )



@ Mean field energy:

2
3m 1 / 8

@ Chemical potential:
2
ex(a) = ?1)_7(;(%2 (:l:\/l + 3%(1— 1)
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Bose-Einstein condensates: tangent bifurcation

Typical scenario

@ Stationary solutions to the Gross-Pitaevskii equation exist only in
certain areas of the parameter space defining the physics of the
condensate.

@ At a critical parameter value two solutions are created in a tangent
bifurcation.

@ At the point of bifurcation the energy eigenvalues (chemical
potentials), the mean field energies and the wave functions of both
solutions are identical.

0.0 : ‘
R | o Condensate with attractive 1/r
w 20 ] interaction.
20| S @ Only one real parameter: scaled
' €, scattering length N2%a/a, — a.
,,,,,,,,,,,,,,, e
40 e




Is the degeneracy an exceptional point?

Degeneracy ]
a4 = Qcrit — k+ = k—v 0
EL =E_ w 20
B ==y 30
o - . €
@ energies are identical | | by
. -4.0 — :
@ wave functions 1, and 1.1 09 0.7 0.5
are identical a

Access to the permutation behaviour:
@ A two-dimensional parameter space is required: extension to
complex numbers: ¢ € C

@ A clear proof is the permutation of two eigenvalues if a circle around
the critical parameter value is traversed:

a = Qeriy + 17€'%, p=0...2m
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@ A clear permutation of the two solutions for the chemical potential
is visible.

@ A permutation of the two mean field energy values is not visible.

Is there an explanation for this behaviour?
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@ The first order term with the phase factor ¢!#/2 vanishes.

@ The lowest non-vanishing order has the phase factor e'¥ which does
not lead to a permutation of the energies.

@ The third order term is the lowest order responsible for a
permutation.
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@ The first order term with the phase factor ¢'#/2 does not vanish.

@ The lowest non-vanishing order leads to a permutation of the
chemical potential values.

@ The permutation of the eigenvalues appears for a small radius.
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@ For increasing radii, higher order terms become more and more

important and the permutation of the mean field energy values
becomes visible.

@ The permutation of the chemical potential solutions does not
change.



0.35

0.00

Im(e ,)

-0.35

-1.15

-0.80 -0.45
Re(e,,,)

Im(E,,)

0.025 T
0.015 r 1
0.005 | b
-0.005 b
-0.015 | b
-0.025 ;

-0.160 -0.135 -0.110

Re(E,,)

For a further increasing radius, a deformation of the circle of the
mean field energy appears (as in our linear model system).

The shape of the chemical potential circle does not change but the
spacing between the points is no longer uniform.



@ Mean field energy:
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o A clear semicircle structure is expected for a large radius.
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Semicircles are visible for both the mean field energy and the chemical
potential.

So far we investigated only variational solutions. Is the exceptional point
a property of the Gross-Pitaevskii equation?




Numerical solution of the Gross-Pitaevskii equation

System of coupled differential equations

U (r) + %‘l"(r) = —U(r)¥(r) + 87b| ¥ (r)[*T(r) ,

U"(r) + 2U(r) = ~8el ()P

@ Procedure: Perform a circle in the complex plane around the
numerically accurate bifurcation point @ = —1.0251 and solve the
Gross-Pitaevskii equation for each point on the circle.

@ The GP equation contains the square modulus of the wave function
1) and is therefore a non-analytic function of .

@ Nontrivial task: An analytic continuation of the Gross-Pitaevskii
equation is required to obtain the corresponding wave functions.



Analytic continuation of the Gross-Pitaevskii equation

@ Any complex wave function can be written as

Y(r) = emFBr)

with real functions a(r) and §(r) to determine the amplitude and
phase of the wave function, respectively.

@ The complex conjugate and the square modulus of ¥ (r) read:
’(/)*(7‘) — ea(r)—iﬂ(r) , \¢("‘)|2 — e2a(r)

@ The GP system can then be transformed into two coupled nonlinear
differential equations for the real functions a(r) and 3(7), however,
without any complex conjugate or square modulus. These equations
can now be continued analytically by allowing for complex valued
functions a(r) and 3(r).

e Consequence: The square modulus, |1(r)|? = (") can become
complex, leading to a complex absorbing potential in the
Gross-Pitaevskii equation.
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Comparison of variational and numerically exact results
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Phase behaviour

@ Do the two eigenstates change sign while they permute as a circle in
the complex parameter plane is traversed?

@ The eigenfunctions of the (nonlinear) stationary Gross-Pitaevskii
equation are not orthogonal. A "left-hand” vector cannot clearly be
defined.

@ An accessible value is the complex overlap integral for the two
non-orthogonal normalised states

O = 47r/1/)1(7°)w2(r) r2dr

@ A phase behaviour without a change in sign is expected. However, a
possible true geometric phase is not accessible.
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o Complex extension: a € C — four dimensional
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Circle around the degeneracy for dipolar condensates

e\

Im(a)

Im(a)

i
a = Qcrit + 1€ ¢7

p=0...

1: attractive dipole-dipole interaction

0.0012

0.0006 -
0.0000
-0.0006 | .

-0.0012
0.1370

Re(a)

0.1394

Im(e)

15000
7500

0
-7500
-15000

298 315
Re(e)/10°

6: repulsive dipole-dipole interaction

0.0012
0.0006 |
0.0000 |
-0.0006 - *.
-0.0012

-0.0208

Re(a)

-0.0182

Im(e)

2000
1000
0
-1000
-2000

332

464 466
Re(e)/10°

468

Im(E)

Im(E)

4000
2000
0
-2000
-4000

1500
750

0
=750
-1500

0

251 255
Re(E)/10°

259

347.0 348.5 350.0

Re(E)/10°



Summary

@ Bose-Einstein condensates exhibit two stationary states which are
born in a tangent bifurcation under variations of the s-wave
scattering length.

@ The bifurcation points are a nonlinear variant of an exceptional
point.

@ The identification of the exceptional points is possible with a
complex extension of the scattering length leading to complex
absorbing potentials.

@ They have been found and identified in BEC

e a harmonic trap
e with attractive 1/r interaction
e with dipole-dipole interaction
@ BEC near the collapse point are experimental realisations of a real
physical system close to exceptional points.

@ However, a direct experimental proof of the existence of an
exceptional point seems not to be possible.



Some questions

@ Improving the variational solution for a dipolar BEC: coupled
Gaussian wave packets

by =Y exp([r ~ g AL — gu()]
k

+ipg(t) - [r — qr(t)] + %(t))

@ The Gross-Pitaevskii equation is the Hartree equation of a linear
many-body Hamiltonian. What is the origin of the exceptional point?
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