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Reminder: Bose-Einstein condensation

Predicted by Satyendra Nath
Bose and Albert Einstein
1924:
When the thermal de Broglie
wavelength becomes of the
order of the interparticle
distance, bosons begin to
“condense” into their ground
state. All bosons have the
same energy and quantum
characteristics, similar to the
way all photons in a laser
share the same quantum
state.



Experimental realisation

BEC in 87Rb by Wieman et al. 1995 BEC in 23Na by Ketterle et al. 1995 
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Figure 1: Observation of BEC in rubidium by the JILA group. The  
upper left sequence of pictures shows the shadow created by  
absorption in the expanding atomic cloud released from the trap.  
Below, the same data are shown in another representation, where the  
distribution of the atoms in the cloud is depicted. In the first frame  
to the left, we see the situation just before the condensation sets in,  
in the middle a condensate peak with a thermal background is  
observed, whereas the third figure shows the situation where almost  
all atoms participate in the condensate. The thermal cloud is seen as  
a spherically symmetric broad background, whereas the sharp peak  
describing the condensate displays the squeezed shape expected in  
an asymmetric trap. The diagram to the right cuts through the atomic  
cloud when it is cooled by more and more atoms being evaporated.  
The figures are from publication [8]. 

 
The experimental recordings are made by releasing the atomic cloud from the trap and 
imaging its later shape by the shadow formed with resonant light. It will then have 
expanded and takes up a larger shape mainly determined by its momentum distribution 
at the moment of release. The pedestal seen in the figure derives from the thermal cloud, 
which is essentially spherically symmetric, whereas the condensate peak mirrors the 
asymmetry of the condensate wave function in the momentum representation. The fact 
that its image is not symmetric constitutes strong evidence for the presence of BEC. 
Since the detection method is destructive, the experiment requires good reproducibility. 

Nobel prize 2001



T = 0 K: Ground state of a BEC

Many-body Hamiltonian of N identical bosons

H =
∑
i

p2i
2m

+
∑
i

U(ri) +
∑
i<j

V (ri, rj)

External potential U(r)

Two-body interaction potential V (r, r′)

Zero-temperature bosonic ground state: Ψ =
∏N
i=1 ψ(ri)

Hartree equation for single-particle orbital ψ

{
p2

2m
+ U(r) + (N − 1)

∫
V (r, r′)|ψ(r′, t)|2 d3r′

}
ψ(r, t) = i~

∂ψ(r, t)

∂t

Nonlinear Schrödinger equation!



Dilute gases in a harmonic trap

External trapping potential to confine the condensate:

U(r) =
m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

Short-range two-body contact interaction (s-wave scattering
interaction with scattering length a):

Vs(r, r
′) =

4πa~2

m
δ(r − r′)

For N � 1 [i.e. (N − 1) ≈ N ]: macroscopic wave function
Ψ(r, t) =

√
Nψ(r, t):

Gross-Pitaevskii equation for Ψ{
p2

2m
+
m

2

∑
i

ω2
i x

2
i +

4πa~2

m
|Ψ(r, t)|2

}
Ψ(r, t) = i~

∂Ψ(r, t)

∂t



BEC with long-range dipolar interaction

Experimental realisation of a dipolar BEC:

Pfau et al., PRL 94, 160401 (2005)
chromium (52Cr)
large magnetic moment: µ = 6µB

The interaction is
long-range
anisotropic

z

r−r’

Potential

Vdd(r, r′) =
µ0µ

2

4π

1− 3 cos2 ϑ′

|r − r′|3



BEC with long-range monopolar interaction

Proposal: D.O. O’Dell, et al., PRL 84, 5697 (2000)

a triad

laser induced dipole-dipole interaction
6 “triads” of intense off-resonant laser
beams
1/r3 in the near-zone limit averages
out
gravity-like interaction (“monopolar
atoms”):

Vu(r, r′) = − u

|r − r′|
Novel physical feature: self-trapping of the condensate, without
external trap.
Theoretical advantage: For self-trapping analytical variational
calculations are feasible. These will serve as a guide for
investigations of more complex situations and condensates.



Tuning of the scattering length via Feshbach resonances

Near B0

a = abg

(
1− ∆B

B −B0

)
a > 0: repulsive, a < 0: attractive interaction



Collapse of a condensate at a critical scattering length

Donley et al., Nature 412, 295
(2001): Collapse of a 85Rb BEC

Koch et al., Nature Physics 4, 218
(2008): Collapse of a 52Cr BEC
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Gross-Pitaevskii equation for a BEC with 1/r-interaction

Time-independent extended Gross-Pitaevskii equation with radially
symmetric trap in appropriate “atomic units”:

εψ(r) =

[
−∆r +

∑
i

γ2i x
2
i +N

(
8πa |ψ(r)|2

− 2

∫
d3r′

|ψ(r)|2

|r − r′|

)]
ψ(r)

Scaling property:

(Nr,N2a,γ/N2, ε/N2, N−3/2ψ) −→ (r, a,γ, ε, ψ)

Remaining parameters: γ, a
Case of self-trapping: γ = 0, i.e. there is only one parameter

Self-trapping condensate

εψ(r) =

[
−∆r +

(
8πa |ψ(r)|2 − 2

∫
d3r′

|ψ(r)|2

|r − r′|

)]
ψ(r)



A variational solution for a BEC with 1/r-interaction

Variational method: minimisation of the mean field energy:

E[ψ] =

∫
d3r ψ∗(r)

(
−∆r + 4πa |ψ(r)|2

−
∫

d3r′
|ψ(r)|2

|r − r′|

)
ψ(r)
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Trial wave function:

ψ(r) = A exp
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Solution:
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Two stationary solutions

Mean field energy:

E±(a) =
3π

16

1
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√
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Chemical potential:

ε±(a) =
3π
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√
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Bose-Einstein condensates: tangent bifurcation

Typical scenario
Stationary solutions to the Gross-Pitaevskii equation exist only in
certain areas of the parameter space defining the physics of the
condensate.
At a critical parameter value two solutions are created in a tangent
bifurcation.
At the point of bifurcation the energy eigenvalues (chemical
potentials), the mean field energies and the wave functions of both
solutions are identical.
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Example
Condensate with attractive 1/r
interaction.
Only one real parameter: scaled
scattering length N2a/au → a.



Is the degeneracy an exceptional point?

Degeneracy
a = acrit → k+ = k−,

E+ = E−

ε+ = ε−,

energies are identical
wave functions ψk+ and ψk−
are identical
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Access to the permutation behaviour:
A two-dimensional parameter space is required: extension to
complex numbers: a ∈ C
A clear proof is the permutation of two eigenvalues if a circle around
the critical parameter value is traversed:

a = acrit + reiϕ, ϕ = 0 . . . 2π



Circle with a small radius
Numerical result, r = 10−8
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The surprising(?) result
A clear permutation of the two solutions for the chemical potential
is visible.
A permutation of the two mean field energy values is not visible.

Is there an explanation for this behaviour?



Circle with a small radius (r � 1)
Analytic approximation of the energy

Power series expansion

E±(ϕ) = − 4

9π
+ 0 ·

√
reiϕ/2 +

32

27π2
·
√
r
2
eiϕ

±
(

4

9π
− 32

9π2

)
·
√
r
3
e(3/2)iϕ + O

(√
r
4
)

The first order term with the phase factor eiϕ/2 vanishes.
The lowest non-vanishing order has the phase factor eiϕ which does
not lead to a permutation of the energies.
The third order term is the lowest order responsible for a
permutation.



Circle with a small radius (r � 1)
Analytic approximation of the chemical potential

Power series expansion

ε±(ϕ) = − 20

9π
± 8

3π
·
√
reiϕ/2 −

(
4

3π
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128

27π2
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·
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r
2
eiϕ

±
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8

9π
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9π2
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·
√
r
3
e(3/2)iϕ + O

(√
r
4
)

The first order term with the phase factor eiϕ/2 does not vanish.
The lowest non-vanishing order leads to a permutation of the
chemical potential values.
The permutation of the eigenvalues appears for a small radius.



Increasing radius
r = 10−3
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For increasing radii, higher order terms become more and more
important and the permutation of the mean field energy values
becomes visible.
The permutation of the chemical potential solutions does not
change.



Deformation of the circle
r = 10−1
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For a further increasing radius, a deformation of the circle of the
mean field energy appears (as in our linear model system).
The shape of the chemical potential circle does not change but the
spacing between the points is no longer uniform.



Circle with a large radius (r � 1)
Analytic approximation

Mean field energy:

E±(ϕ) = ±
(
π

16
− 1

2

)
· e−iϕ/2√

r
+

1

2
· e−iϕ
√
r
2

±
(

3π2
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√
r
3 + O

(
1
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)

Chemical potential:

ε±(ϕ) = ±
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8
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A clear semicircle structure is expected for a large radius.



Circle with a large radius (r � 1)
Numerical result, r = 108

-8×10
-5

 0×10
0

 8×10
-5

-8×10
-5

 0×10
0

 8×10
-5

Im
(ε

v
a
r)

Re(ε
var

)

-4×10
-5

 0×10
0

 4×10
-5

-4×10
-5

 0×10
0

 4×10
-5

Im
(E

v
a
r)

Re(E
var

)

Semicircles are visible for both the mean field energy and the chemical
potential.

Open question
So far we investigated only variational solutions. Is the exceptional point
a property of the Gross-Pitaevskii equation?



Numerical solution of the Gross-Pitaevskii equation

System of coupled differential equations

Ψ′′(r) +
2

r
Ψ′(r) = −U(r)Ψ(r) + 8πb|Ψ(r)|2Ψ(r) ,

U ′′(r) +
2

r
U ′(r) = −8π|Ψ(r)|2 ,

Procedure: Perform a circle in the complex plane around the
numerically accurate bifurcation point a = −1.0251 and solve the
Gross-Pitaevskii equation for each point on the circle.
The GP equation contains the square modulus of the wave function
ψ and is therefore a non-analytic function of ψ.
Nontrivial task: An analytic continuation of the Gross-Pitaevskii
equation is required to obtain the corresponding wave functions.



Analytic continuation of the Gross-Pitaevskii equation

Any complex wave function can be written as

ψ(r) = eα(r)+iβ(r) ,

with real functions α(r) and β(r) to determine the amplitude and
phase of the wave function, respectively.
The complex conjugate and the square modulus of ψ(r) read:

ψ∗(r) = eα(r)−iβ(r) , |ψ(r)|2 = e2α(r)

The GP system can then be transformed into two coupled nonlinear
differential equations for the real functions α(r) and β(r), however,
without any complex conjugate or square modulus. These equations
can now be continued analytically by allowing for complex valued
functions α(r) and β(r).
Consequence: The square modulus, |ψ(r)|2 = e2α(r) can become
complex, leading to a complex absorbing potential in the
Gross-Pitaevskii equation.



Comparison of variational and numerically exact results

Encircling the
degeneracy

Qualitatively the same
behaviour.
Quantitative differences
which already appear for
all stationary solutions.
The exact numerical
calculations confirm the
variational result.
The exceptional point is
not an effect of the
variational
approximation.
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Phase behaviour

Do the two eigenstates change sign while they permute as a circle in
the complex parameter plane is traversed?
The eigenfunctions of the (nonlinear) stationary Gross-Pitaevskii
equation are not orthogonal. A “left-hand” vector cannot clearly be
defined.
An accessible value is the complex overlap integral for the two
non-orthogonal normalised states

O12 = 4π

∫
ψ1(r)ψ2(r) r2dr

A phase behaviour without a change in sign is expected. However, a
possible true geometric phase is not accessible.
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Dipolar Bose-Einstein condensates

Scaled Gross-Pitaevskii equation[
−∆r + γ2%%

2 + γ2zz
2 + 8πa|ψ(r)|2

+

∫
|ψ(r′)|2 1− 3 cos2 ϑ′

|r − r′|3
d3r′

]
ψ(r) = εψ(r)
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Mean trap frequency:
γ̄ = 3.4× 104.
ζ = γz/γr.



“Exceptional surface” for dipolar condensates

Three dimensional parameter space

γ̄ = γ
2/3
r γ

1/3
z

ζ = γz/γr

a

Complex extension: a ∈ C → four dimensional
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Generalised exceptional
point: co-dimension 2
Here: two-dimensional
object → surface



Circle around the degeneracy for dipolar condensates

a = acrit + reiϕ, ϕ = 0 . . . 2π

λ = 1: attractive dipole-dipole interaction
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λ = 6: repulsive dipole-dipole interaction

-0.0012

-0.0006

 0.0000

 0.0006

 0.0012

-0.0208 -0.0182

Im
(a

)

Re(a)

  -2000

  -1000

      0

   1000

   2000

    464     466     468

Im
(ε

)

Re(ε)/10
3

  -1500

   -750

      0

    750

   1500

347.0 348.5 350.0

Im
(E

)

Re(E)/10
3



Summary

Bose-Einstein condensates exhibit two stationary states which are
born in a tangent bifurcation under variations of the s-wave
scattering length.
The bifurcation points are a nonlinear variant of an exceptional
point.
The identification of the exceptional points is possible with a
complex extension of the scattering length leading to complex
absorbing potentials.
They have been found and identified in BEC

a harmonic trap
with attractive 1/r interaction
with dipole-dipole interaction

BEC near the collapse point are experimental realisations of a real
physical system close to exceptional points.
However, a direct experimental proof of the existence of an
exceptional point seems not to be possible.



Some questions

Improving the variational solution for a dipolar BEC: coupled
Gaussian wave packets

ψ(r) =
∑
k

exp

(
[r − qk(t)]TAk(t)[r − qk(t)]

+ ipk(t) · [r − qk(t)] + γk(t)

)
The Gross-Pitaevskii equation is the Hartree equation of a linear
many-body Hamiltonian. What is the origin of the exceptional point?
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