EPs in Microwave Billiards: Eigenvectors and the Full Hamiltonian for T-invariant and T-noninvariant Systems

- Precision experiment with microwave billiard
\rightarrow extraction of full EP Hamiltonian from scattering matrix
- Properties of eigenvalues and eigenvectors at and close to an EP
- EPs in systems with violated T invariance
- Encircling the EP: geometric phases and amplitudes
- PT symmetry of the EP Hamiltonian

Supported by DFG within SFB 634
S. Bittner, B. D., M. Miski-Oglu, A. Richter, F. Schäfer
H. L. Harney, O. N. Kirillov, U. Günther

Microwave Resonator for the Observation of Exceptional Points

TECHNISCHE

- Divide a circular microwave billiard into two approximately equal parts
- The coalescence at the EP is accomplished by the variation of two parameters

- The opening scontrols the coupling of the eigenmodes of the two billiard parts
- The position δ of the Teflon disk mainly effects the resonance frequencies of the left part
- Insert a ferrite F and magnetize it with an exterior magnetic field B to induce T violation

Experimental setup

(B. Dietz et al., Phys. Rev. Lett. 106, 150403 (2011))

- Parameter plane (s, δ) is scanned on a very fine grid

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara

Resonance Spectra Close to an EP ($\mathrm{B}=0$)

- Scattering matrix: $\hat{\mathrm{S}}=\hat{\mathrm{I}}-2 \pi i \hat{\mathrm{~W}}^{T}\left(\mathrm{E}-\hat{\mathrm{H}}_{\text {eff }}\right)^{-1} \hat{\mathrm{~W}}$
- $\hat{H}_{\text {eff }}$: two-state Hamiltonian including dissipation and coupling to the exterior
- $\hat{\mathbf{w}}$: coupling of the resonator modes to the antenna states

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint 1 I 1

Two-State Matrix Model for the T-invariant Case

- Determine the non-Hermitian complex symmetric 2×2 matrix $\hat{H}_{\text {eff }}$ and its eigenvalues and eigenvectors for each $(\mathrm{s}, \boldsymbol{\delta})$ from the measured S matrix

$$
\hat{H}_{\text {eff }}(\mathrm{s}, \delta)=\left(\begin{array}{ll}
\mathrm{E}_{1} & \mathrm{H}_{12}^{\mathrm{S}} \\
\mathrm{H}_{12}^{\mathrm{S}} & \mathrm{E}_{2}
\end{array}\right)
$$

ies are functions of δ and s

- Eigenvalues:

$$
\begin{aligned}
& \mathrm{e}_{1,2}=\left(\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{2}\right) \pm \Re \\
& \mathfrak{R}=\mathrm{H}_{12}^{\mathrm{S}} \sqrt{\mathrm{Z}^{2}+1} ; \mathrm{Z}=\frac{\mathrm{E}_{1}-\mathrm{E}_{2}}{2 \mathrm{H}_{12}^{\mathrm{S}}} \\
& \mathfrak{R}=0: \mathrm{Z}= \pm i \leftrightarrow \delta=\delta_{\mathrm{EP}}, \mathrm{~s}=\mathrm{s}_{\mathrm{EP}}
\end{aligned}
$$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara nint 1 I

Resonance Shape at the EP

- At the EP the $\hat{H}_{\text {eff }}$ is given in terms of a Jordan normal form

$$
\hat{\mathrm{H}}_{\mathrm{eff}}\left(\mathrm{~s}_{\mathrm{EP}}, \delta_{\mathrm{EP}}\right)=\left(\begin{array}{ll}
\lambda_{0} & 1 \\
0 & \lambda_{0}
\end{array}\right) \quad \text { with } \quad \lambda_{0}=\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{2}
$$

- S_{ab} has two poles of 1 st order and one pole of 2nd order

$$
\begin{aligned}
\mathrm{S}_{\mathrm{ab}} & =\delta_{\mathrm{ab}}-\mathrm{V}_{\mathrm{la}} \frac{1}{\left(f-\lambda_{0}\right) \mathrm{V}_{1 \mathrm{~b}}}-\mathrm{V}_{2 \mathrm{a}} \frac{1}{\left.\left(f-\lambda_{0}\right)\right)^{2 \mathrm{~b}}} \\
& \mathrm{~V}^{\mathrm{H}} \mathrm{H}_{12}^{S}\left\{i\left(\mathrm{~V}_{\mathrm{la}} \mathrm{~V}_{1 \mathrm{~b}}-\mathrm{V}_{2 \mathrm{a}} \mathrm{~V}_{2 \mathrm{~b}}\right)+\mathrm{V}_{\mathrm{la}} \mathrm{~V}_{2 \mathrm{~b}}+\mathrm{V}_{2 \mathrm{a}} \mathrm{~V}_{\mathrm{lb}}\right\}
\end{aligned}
$$

\rightarrow at the EP the resonance shape is not described by a Breit-Wigner form

- Note: this lineshape leads to t^{2}-behavior (\rightarrow first talk)

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint ד I C

Localization of an EP ($\mathrm{B}=0$)

- Change of the real and the imaginary part of the eigenvalues $\mathrm{e}_{1,2}=\mathrm{f}_{1,2}+i \Gamma_{1,2}$. They cross at $\mathrm{S}=\mathrm{S}_{\mathrm{EP}}=1.68 \mathrm{~mm}$ and $\delta=\delta_{\mathrm{EP}}=41.19 \mathrm{~mm}$.
- Change of modulus and phase of the ratio of the components $\mathrm{r}_{\mathrm{j}, 1}, \mathrm{r}_{\mathrm{j}, 2}$ of the eigenvector $\left|\mathrm{r}_{\mathrm{j}}\right\rangle$

$$
v_{\mathrm{j}}=\frac{\mathrm{r}_{\mathrm{j}, 1}}{\mathrm{r}_{\mathrm{j}, 2}}=\left|v_{\mathrm{j}}\right| e^{i \Phi_{\mathrm{j}}}
$$

- At $\left(\mathrm{s}_{\mathrm{EP}} \delta_{\mathrm{EP}}\right) \quad\left|\mathrm{r}_{\mathrm{j}}\right\rangle=\binom{\mathrm{r}_{\mathrm{j}, 1}}{\mathrm{r}_{\mathrm{j}, 2}} \rightarrow\binom{i}{1}$

Eigenvalues and Ratios of Eigenvector Components in the Parameter Plane ($B=0$)

- S matrix is measured for each point of a grid with $\Delta \mathrm{s}=\Delta \delta=0.01 \mathrm{~mm}$
- Note the dark line, where $\mathrm{e}_{1}-\mathrm{e}_{2}$ is either real or purely imaginary.

There, $\hat{\mathrm{H}}_{\text {eff }} \rightarrow P T$-symmetric $\hat{\mathrm{H}}$

- Parameterize the contour by the variable t with $\mathrm{t}=0$ at start point, $\mathrm{t}=\mathrm{t}_{1}$ after one loop, $\mathrm{t}=\mathrm{t}_{2}$ after second one

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Nint 10

Encircling the EP in the Parameter Plane (T-invariant Case)

- The biorthonormalized eigenvectors $\left\langle l_{\mathrm{j}}(\mathrm{t})\right|$ and $\left|\mathrm{r}_{\mathrm{j}}(\mathrm{t})\right\rangle$ with $\left\langle l_{\mathrm{j}}(\mathrm{t}) \mid \mathrm{r}_{\mathrm{j}}(\mathrm{t})\right\rangle=1$ are defined up to a geometric factor $\mathrm{e}^{ \pm \mathrm{i}_{\mathrm{j}}(\mathrm{t})}$
- The geometric phases $\gamma_{j}(\mathrm{t})$ are fixed by the condition of parallel transport

$$
\left\langle l_{\mathrm{j}}(\mathrm{t}) e^{-i \gamma_{\mathrm{j}}(\mathrm{t})} \left\lvert\, \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{r}_{\mathrm{j}}(\mathrm{t}) e^{i \gamma_{\mathrm{j}}(\mathrm{t})}\right.\right\rangle=0 \quad \Rightarrow \gamma_{1}(\mathrm{t})=\gamma_{2}(\mathrm{t}) \equiv 0
$$

- With $\tan \theta(\mathrm{t})=\sqrt{1+\mathrm{Z}^{2}}-\mathrm{Z}$ the eigenvectors are

$$
\left|\mathrm{r}_{1}(\mathrm{t})\right\rangle=\binom{\cos \theta(\mathrm{t})}{\sin \theta(\mathrm{t})},\left|\mathrm{r}_{2}(\mathrm{t})\right\rangle=\binom{-\sin \theta(\mathrm{t})}{\cos \theta(\mathrm{t})}
$$

- Encircling the EP once: $\theta \rightarrow \theta+\frac{\pi}{2} \Rightarrow \mathrm{e}_{1} \leftrightarrow \mathrm{e}_{2},\binom{\left|\mathrm{r}_{1}\right\rangle}{\left|\mathrm{r}_{2}\right\rangle} \rightarrow\binom{-\left|\mathrm{r}_{2}\right\rangle}{\left|\mathrm{r}_{1}\right\rangle}$

Change of the Eigenvalues along the Contour (B=0)

- The real, respectively, the imaginary parts of the eigenvalues cross once during each encircling at different t
- The eigenvalues are interchanged $\binom{e_{1}}{e_{2}} \rightarrow\binom{e_{2}}{e_{1}}$
- Note: $\operatorname{Im}\left(\mathrm{e}_{1}\right)+\operatorname{Im}\left(\mathrm{e}_{2}\right) \approx$ const. \rightarrow dissipation depends weakly on (s, δ)

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Dintz I 10

Evolution of the Eigenvector Components along the Contour ($B=0$)

TECHNISCHE
UNIVERSITAT
DARMSTADT

- Evolution of the first component $\mathrm{r}_{\mathrm{j}, 1}$ of the eigenvector $\left|\mathrm{r}_{\mathrm{j}}\right\rangle$ as function of t
- After each loop the eigenvectors are interchanaed and the first one picks up a geometric phase $\pi\binom{\left|\mathbf{r}_{1}\right\rangle}{\left|\mathbf{r}_{2}\right\rangle},\left\{\begin{array}{c}-\left|\mathbf{r}_{2}\right\rangle \\ \left|\mathbf{r}_{1}\right\rangle\end{array}\right.$
- Phase does not depend on choice of circuit \rightarrow topological phase

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara 5 Nint 111

Summary for T-invariant case

- Full EP Hamiltonian extracted from measured scattering matrix \rightarrow direct determination of its eigenvalues and eigenvectors possible
- Behavior of eigenvalues and eigenvectors for T-invariant case as expected \rightarrow confirms validity of the procedure used for data analysis
- Next step: Investigation of the T-noninvariant case following the same procedure

Microwave Billiard for the Study of Induced T Violation

N
S

- A cylindrical ferrite is placed in the resonator
- An external magnetic field is applied perpendicular to the billiard plane
- The strength of the magnetic field is varied by changing the distance between the magnets

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara

Induced Violation of T Invariance with a Ferrite

- Spins of magnetized ferrite precess collectively with their Larmor frequency about the external magnetic field (\rightarrow first talk)
- Coupling of rf magnetic field to the ferromagnetic resonance depends on the direction $\mathrm{a} \leftrightharpoons \mathrm{b}$

- T-invariant system
\rightarrow principle of reciprocity $\mathrm{S}_{\mathrm{ab}}=\mathrm{S}_{\mathrm{ba}}$

$$
\rightarrow \text { detailed balance } \quad\left|\mathrm{S}_{\mathrm{ab}}\right|^{2}=\left|\mathrm{S}_{\mathrm{ba}}\right|^{2}
$$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara 5 Mint I 11

Test of Reciprocity

- Clear violation of the principle of reciprocity for nonzero magnetic field

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Nint긴

Two-State Matrix Model for Broken T invariance

- $\hat{\mathrm{H}}_{\text {eff }}$: non-Hermitian and non-symmetric complex 2×2 matrix (\rightarrow first talk)

$$
\hat{\mathrm{H}}_{\text {eff }}(\mathrm{s}, \delta)=\left(\begin{array}{cc}
\mathrm{E}_{1} & \mathrm{H}_{12}^{\mathrm{S}} \\
\mathrm{H}_{12}^{\mathrm{S}} & \mathrm{E}_{2}
\end{array}\right)+i\left(\begin{array}{cc}
0 & -\mathrm{H}_{12}^{A} \\
\mathrm{H}_{12}^{A} & 0
\end{array}\right)
$$

- $\mathrm{H}_{12}^{A}: T$-breaking matrix element
- Eigenvalues: $\quad e_{1,2}=\left(\frac{E_{1}+E_{2}}{2}\right) \pm \Re$

$$
\mathfrak{R}=\sqrt{\mathrm{H}_{12}^{S^{2}}+\mathrm{H}_{12}^{A^{2}}} \sqrt{\mathrm{Z}^{2}+1} ; \mathrm{Z}=\frac{\mathrm{E}_{1}-\mathrm{E}_{2}}{2 \sqrt{\mathrm{H}_{12}^{S^{2}}+\mathrm{H}_{12}^{A^{2}}}}
$$

- EPs:

$$
\mathfrak{R}=0: \mathrm{Z}= \pm i \leftrightarrow \delta=\delta_{\mathrm{EP}}, \mathrm{~s}=\mathrm{s}_{\mathrm{EP}}
$$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Dintal 16

T-Violation Parameter τ

- For each set of parameters $(\mathrm{s}, \delta) \hat{\mathrm{H}}_{\text {eff }}$ is obtained from the measured $\hat{\mathrm{S}}$ matrix

$$
\hat{\mathrm{S}}=\hat{\mathrm{I}}-2 \pi i \hat{\mathrm{~W}}^{T}\left(\mathrm{E}-\hat{\mathrm{H}}_{\mathrm{eff}}\right)^{-1} \hat{\mathrm{~W}}
$$

- $\hat{\mathrm{H}}_{\text {eff }}$ and $\hat{\mathrm{W}}$ are determined up to common real orthogonal transformations
- Choose real orthogonal transformation such that

$$
\frac{\left(\mathrm{H}_{12}^{S}+i \mathrm{H}_{12}^{A}\right)}{\left(\mathrm{H}_{12}^{S}-i \mathrm{H}_{12}^{A}\right)}=e^{2 i \tau} \text { with } \tau \in[0, \pi[\text { real }
$$

- T violation is expressed by a real phase \rightarrow usual practice in nuclear physics

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara 5 Dint? 117

Localization of an EP ($B=53 \mathrm{mT}$)

- Change of the real and the imaginary part of the eigenvalues $\mathrm{e}_{1,2}=\mathrm{f}_{1,2}+i \Gamma_{1,2}$. They cross at $\mathrm{s}=\mathrm{S}_{\mathrm{EP}}=1.66 \mathrm{~mm}$ and $\delta=\delta_{\mathrm{EP}}=41.25 \mathrm{~mm}$.
- Change of modulus and phase of the ratio of the components $\mathrm{r}_{\mathrm{j}, 1}, \mathrm{r}_{\mathrm{j}, 2}$ of the eigenvector $\left|\mathrm{r}_{\mathrm{j}}\right\rangle$

$$
v_{\mathrm{j}}=\frac{\mathrm{r}_{\mathrm{j}, 1}}{\mathrm{r}_{\mathrm{j}, 2}}=\left|v_{\mathrm{j}}\right| e^{i \boldsymbol{\Phi}_{\mathrm{j}}}
$$

- At $\left(\mathrm{s}_{\mathrm{EP}}, \delta_{\mathrm{EP}}\right) \quad\left|\mathrm{r}_{\mathrm{j}}\right\rangle=\binom{\mathrm{r}_{\mathrm{j}, 1}}{\mathrm{r}_{\mathrm{j}, 2}} \rightarrow\binom{i e^{i \pi t}}{1}$

T-Violation Parameter τ at the EP

$$
\text { - } \Phi_{\mathrm{EP}}=\pi / 2+\tau
$$

- Φ and also the T-violating matrix element shows resonance like structure

$$
\mathrm{H}_{12}^{A}(\mathrm{~B})=\frac{\pi}{2} \cdot \lambda \quad . \quad \mathrm{B} \quad \cdot \mathrm{~T}^{\mathrm{r}} \cdot \frac{\omega_{M}^{2}}{} \begin{gathered}
\uparrow \\
\\
\\
\\
\begin{array}{c}
\text { coupling } \\
\text { strength }
\end{array} \\
\end{gathered} \begin{array}{ccc}
\omega_{0}(\mathrm{~B})-\bar{\omega}-i / \mathrm{T}^{\mathrm{r}} \\
\text { relaxation } \\
\text { time }
\end{array} \quad \begin{gathered}
\uparrow \\
\text { susceptibility }
\end{gathered}
$$

 Nint 110

Eigenvalues and Ratios of Eigenvector Components in Parameter Plane ($\mathrm{B}=53 \mathrm{mT}$)

- S matrix is measured for each point of a grid with $\Delta \mathrm{s}=\Delta \delta=0.01 \mathrm{~mm}$
- Note the dark line, where $\mathrm{e}_{1}-\mathrm{e}_{2}$ is either real or purely imaginary. There, $\hat{\mathrm{H}}_{\text {eff }} \rightarrow P T$-symmetric $\hat{\mathrm{H}}$
- Parameterize the contour by the variable t with $\mathrm{t}=0$ at starting point, $t=t_{1}$ after one loop, $t=t_{2}$ after second one
Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara 5 ח

Encircling the EP in the Parameter Space (with T violation)

- Eigenvectors along contour: $\left\langle\mathrm{L}_{\mathrm{j}}(\mathrm{t})\right|=\left\langle l_{\mathrm{j}}(\mathrm{t})\right| e^{-i \gamma_{j}(\mathrm{t})},\left|\mathrm{R}_{\mathrm{j}}(\mathrm{t})\right\rangle=\left|\mathrm{r}_{\mathrm{j}}(\mathrm{t})\right\rangle e^{i i_{\mathrm{j}}(\mathrm{t})}$
- Biorthonormality is defined up to a geometric factor $\mathrm{e}^{ \pm i \gamma_{j}(\mathrm{t})}$
- Condition of parallel transport $\left\langle L_{j}(t) \left\lvert\, \frac{d}{d t} R_{j}(t)\right.\right\rangle=0$ yields

$$
\frac{\mathrm{d} \gamma_{1}}{\mathrm{dt}}=-\frac{\mathrm{d} \gamma_{2}}{\mathrm{dt}} \text { and } \gamma_{1,2}(\mathrm{t}) \neq 0 \text { for } \frac{\mathrm{d} \tau}{\mathrm{dt}} \neq 0
$$

- Encircling EP once: $\mathrm{e}_{1} \leftrightarrow \mathrm{e}_{2},\binom{\left|r_{1}\right\rangle}{\left|r_{2}\right\rangle} \rightarrow\binom{-\left|r_{2}\right\rangle}{\left|r_{1}\right\rangle} \rightarrow$ as in T-invariant case
- Additional geometric factor: $e^{i \gamma_{j}(\mathrm{t})}=e^{i \operatorname{Re}\left(\gamma_{\mathrm{j}}(\mathrm{t})\right)} e^{-\operatorname{Im}\left(\gamma_{j}(\mathrm{t})\right)}$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara 5 Rint \quad I $\cap 1$

T-violation Parameter τ along Contour ($B=53 \mathrm{mT}$)

- T-violation parameter τ varies along the contour even though B is fixed because the electromagnetic field at the ferrite changes
- τ increases (decreases) with increasing (decreasing) parameters s and δ
- τ returns after each loop around the EP to its initial value

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint I ?

Change of the Eigenvalues along the Contour ($\mathrm{B}=53 \mathrm{mT}$)

- The real and the imaginary parts of the eigenvalues cross once during each encircling at different values of t
\rightarrow the eigenvalues are interchanged

$$
\binom{\mathrm{e}_{1}}{\mathrm{e}_{2}} \rightarrow\binom{\mathrm{e}_{2}}{\mathrm{e}_{1}}
$$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Nint 1 I 2

Evolution of the Eigenvector Components along the Contour ($B=53 \mathrm{mT}$)

- Measured transformation scheme:

$$
\binom{\left|\mathbf{r}_{1}\right\rangle}{\left|\mathbf{r}_{2}\right\rangle} \rightarrow\binom{-\left|\mathbf{r}_{2}\right\rangle e^{i \gamma_{1}\left(t_{1}\right)}}{\left|\mathbf{r}_{1}\right\rangle e^{-i_{1}\left(t_{1}\right)}} \rightarrow\binom{-\left|\mathbf{r}_{1}\right\rangle e^{i \gamma_{1}\left(t_{2}\right)}}{-\left|\mathbf{r}_{2}\right\rangle e^{-i_{1}\left(t_{2}\right)}}
$$

- No general rule exists for the transformation scheme of the γ_{j}

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint

Geometric Phase $\operatorname{Re}\left(\gamma_{j}(t)\right)$ Gathered along Two Loops

TECHNISCHE
UNIVERSITÄT
DARMSTADT

- Clearly visible that $\operatorname{Re}\left(\gamma_{2}(\mathrm{t})\right)=-\operatorname{Re}\left(\gamma_{1}(\mathrm{t})\right)$
$\mathrm{t}=0: \operatorname{Re}\left(\gamma_{1}(0)\right)=\quad \operatorname{Re}\left(\gamma_{2}(0)\right)=0 \quad \mathrm{t}=0: \operatorname{Re}\left(\gamma_{1}(0)\right)=\quad \operatorname{Re}\left(\gamma_{2}(0)\right)=0$
$\mathrm{t}=\mathrm{t}_{1}: \operatorname{Re}\left(\gamma_{1}\left(\mathrm{t}_{1}\right)\right)=-\operatorname{Re}\left(\gamma_{2}\left(\mathrm{t}_{1}\right)\right)=0.31778=\mathrm{t}_{1}: \operatorname{Re}\left(\gamma_{1}\left(\mathrm{t}_{1}\right)\right)=-\operatorname{Re}\left(\gamma_{2}\left(\mathrm{t}_{1}\right)\right)=0.22468$
$\mathrm{t}=\mathrm{t}_{2}: \operatorname{Re}\left(\gamma_{1}\left(\mathrm{t}_{2}\right)\right)=-\operatorname{Re}\left(\gamma_{2}\left(\mathrm{t}_{2}\right)\right)=0.0931=\mathrm{t}_{2}: \operatorname{Re}\left(\gamma_{1}\left(\mathrm{t}_{2}\right)\right)=-\operatorname{Re}\left(\gamma_{2}\left(\mathrm{t}_{2}\right)\right)=-3.3 \cdot 10$
- Same behavior observed for the imaginary part of $\gamma_{j}(\mathrm{t})$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint I 75

Complex Phase $\gamma_{1}(t)$ Gathered along Two Loops

TECHNISCHE
UNIVERSITATT
DARMSTADT

Δ : start point
$\diamond: \gamma_{1}\left(\mathrm{t}_{1}\right) \neq \gamma_{1}(0)$
$\nabla: \gamma_{1}\left(\mathrm{t}_{2}\right) \neq \gamma_{1}(0)$ if EP is encircled along different loops $\rightarrow\left|\mathrm{e}^{\mathrm{i} \mathrm{\gamma} \gamma_{1}(\mathrm{t})}\right| \neq 1$ possible
 Dint? I OC

Complex Phases $\gamma_{j}(t)$ Gathered when Encircling EP Twice along Double Loop

Δ : start point

$$
\begin{aligned}
& \nabla: \gamma_{1}\left(\mathrm{nt}_{2}\right) \neq \gamma_{1}(0), \\
& \mathrm{n}=1,2, \ldots
\end{aligned}
$$

- Encircle the EP 4 times along the contour with two different loops
- In the complex plane $\gamma_{1,2}(\mathrm{t})$ drift away from the origin

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint

Difference of Eigenvalues in the Parameter Plane

- Dark line: $\left|\mathrm{f}_{1}-\mathrm{f}_{2}\right|=0$ for $\mathrm{s}<\mathrm{s}_{\mathrm{EP}},\left|\Gamma_{1}-\Gamma_{2}\right|=0$ for $\mathrm{s}>\mathrm{s}_{\mathrm{EP}}$
$\rightarrow\left(\mathrm{e}_{1}-\mathrm{e}_{2}\right)=\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)+i\left(\Gamma_{1}-\Gamma_{2}\right)$ is purely imaginary for $\mathrm{s}<\mathrm{s}_{\mathrm{EP}} /$ purely real for $\mathrm{s}>\mathrm{s}_{\mathrm{EP}}$
- $\pm\left(\mathrm{e}_{1}-\mathrm{e}_{2}\right)$ are the eigenvalues of $\hat{\mathrm{H}}_{\mathrm{DL}}=\hat{\mathrm{H}}_{\text {eff }}-\frac{1}{2} \operatorname{Tr}\left(\hat{\mathrm{H}}_{\text {eff }}\right) \hat{\mathrm{I}}$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Nint? 100

Eigenvalues of $\hat{\mathbf{H}}_{\mathrm{DL}}$ along Dark Line

- Eigenvalues of $\hat{\mathrm{H}}_{\mathrm{DL}}: \quad \varepsilon_{ \pm}= \pm \sqrt{\mathrm{V}_{\mathrm{r}}^{2}-\mathrm{V}_{\mathrm{i}}^{2}+2 i \mathrm{~V}_{\mathrm{ri}}}, \quad \mathrm{V}_{\mathrm{r}}, \mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{ri}} \quad$ real
- Dark Line: $\mathrm{V}_{\mathrm{ri}}=0 \rightarrow$ radicand is real
- $\mathrm{V}_{\mathrm{r}}{ }^{2}$ and $\mathrm{V}_{\mathrm{i}}{ }^{2}$ cross at the EP

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara חont

PT symmetry of $\hat{\mathbf{H}}_{\mathrm{DL}}$ along Dark Line

- General form of \hat{H}, which fulfills $[\hat{H}, \boldsymbol{P T}]=0$:

$$
\hat{\mathrm{H}}=\left(\begin{array}{rr}
i \mathrm{~A} & \mathrm{~B} \\
\mathrm{~B} & -i \mathrm{~A}
\end{array}\right), \quad \mathrm{A}, \mathrm{~B} \text { real }
$$

- \boldsymbol{P} : parity operator $P=\hat{\sigma}_{\mathrm{x}}, \boldsymbol{T}$: time-reversal operator $\boldsymbol{T}=\boldsymbol{K}$
- exact PT symmetry: the eigenvalues of \hat{H} are real
- For $\mathrm{V}_{\mathrm{ri}}=0 \hat{\mathrm{H}}_{\mathrm{DL}}$ can be brought to the form of $\hat{\mathrm{H}}$ with the unitary transformation

$$
\hat{\mathrm{U}}=e^{i \varphi \hat{\sigma}_{y}} e^{i \tau / 2 \hat{\sigma}_{z}}
$$

- At the EP its eigenvalues change from purely real to purely imaginary
\rightarrow exact PT symmetry is spontaneously broken
\rightarrow Talk by Uwe Günther
Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara 5 Dintz I 20

Summary

- High precision experiments were performed in microwave billiards with and without T violation at and in the vicinity of an EP
- The behavior of the complex eigenvalues and ratios of the eigenvector components of the associated two-state Hamiltonian were investigated
- Encircling an EP:

- T-invariant case: $\quad \gamma_{1}(\mathrm{t}) \equiv 0$
- Violated T invariance: $\gamma_{1,2}\left(\mathrm{t}_{1}\right) \neq \gamma_{1,2}(0)$, different loops: $\boldsymbol{\gamma}_{1,2}\left(\mathrm{t}_{2}\right) \neq \gamma_{1,2}(0)$
- The size of T violation at the EP is determined from the phase of the ratio of the eigenvector components
- Exact $P T$ symmetry is observed along a line in the parameter plane
- Exact PT symmetry is spontaneously broken at the EP

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Nint 121

Localization of $E P$ for $B=0$ and $B=53 \mathrm{mT}$

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Dint? 120

Geometric Amplitude $\mathrm{e}^{-\mathrm{Tm}\left(\gamma_{1}(\mathrm{t})\right)}$ Gathered Along Two Different/Equal Loops

TECHNISCHE
UNIVERSITÄT
DARMSTADT

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Nint 1 I 22

Difference of Eigenvalues in the parameter plane

- Dark line: $\left|f_{1}-\mathrm{f}_{2}\right|=0$ for $\mathrm{s}<\mathrm{s}_{\mathrm{EP}},\left|\Gamma_{1}-\Gamma_{2}\right|=0$ for $\mathrm{s}>\mathrm{s}_{\mathrm{EP}}$
$\rightarrow\left(\mathrm{e}_{1}-\mathrm{e}_{2}\right)=\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)+i\left(\Gamma_{1}-\Gamma_{2}\right)$ is real for $\mathrm{s}>\mathrm{s}_{\mathrm{EP}}$ and purely imaginary for $\mathrm{s}<\mathrm{s}_{\mathrm{EP}}$
$\bullet \pm\left(e_{1}-e_{2}\right)$ are the eigenvalues of $\hat{H}_{\mathrm{PT}}=\hat{\mathrm{H}}_{\text {eff }}-\frac{\mathrm{E}_{1}+\mathrm{E}_{2}}{2} \hat{\mathrm{I}}=\left(\begin{array}{ll}\frac{\mathrm{E}_{1}-\mathrm{E}_{2}}{2} & \mathrm{H}_{12}^{\mathrm{S}}-i \mathrm{H}_{12}^{A} \\ \mathrm{H}_{12}^{\mathrm{S}}+i \mathrm{H}_{12}^{A} & -\frac{\mathrm{E}_{1}-\mathrm{E}_{2}}{2}\end{array}\right)$
Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Rint 121

Eigenvalues of H_{PT} along Dark Line

- Eigenvalues of $\hat{\mathrm{H}}_{\mathrm{PT}}: \quad \varepsilon_{ \pm}= \pm\left|\mathrm{H}_{12}^{\mathrm{s}}\right| \sqrt{\mathrm{V}_{\mathrm{r}}^{2}-\mathrm{V}_{\mathrm{i}}^{2}+2 i \mathrm{~V}_{\mathrm{ri}}}$,
- Dark Line: $\quad 0=V_{\mathrm{ri}} \propto\left(\operatorname{ReH}_{12}^{\mathrm{S}} \operatorname{ImH}_{12}^{\mathrm{S}}+\operatorname{ReH}_{12}^{\mathrm{A}} \operatorname{Im} \mathrm{H}_{12}^{\mathrm{A}}+\operatorname{Re}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \operatorname{Im}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) / 4\right)$

$$
\left|H_{12}^{\mathrm{s}}\right|^{2} V_{\mathrm{r}}^{2}=\left(\left(\operatorname{ReH}_{12}^{\mathrm{s}}\right)^{2}+\left(\operatorname{Re} \mathrm{H}_{12}^{\mathrm{A}}\right)^{2}+\left(\operatorname{Re}\left[\mathrm{E}_{1}-\mathrm{E}_{2}\right]\right)^{2} / 4\right)
$$

- $\mathrm{V}_{\mathrm{r}}{ }^{2}$ and $\mathrm{V}_{\mathrm{i}}{ }^{2}$ cross at the EP

Dresden 2011 | Institut für Kernphysik, Darmstadt | SFB 634 | Barbara Dint71 25

PT symmetry of H_{PT} along Dark Line

- For $\mathrm{V}_{\mathrm{ri}}=0 \hat{\mathrm{H}}_{\mathrm{PT}}$ can be transformed into a $P T$-symmetric Hamiltonian

$$
\hat{\mathrm{U}} \hat{\mathrm{H}}_{\mathrm{PT}} \hat{\mathrm{U}}^{-1}=\frac{1}{\cos \tau}\left(\begin{array}{rr}
i \frac{\mathrm{ImH}_{12}^{\mathrm{S}}}{\sin 2 \varphi} & \frac{\operatorname{ReH}_{12}^{\mathrm{S}}}{\cos 2 \varphi} \\
\frac{\operatorname{Re} \mathrm{H}_{12}^{\mathrm{S}}}{\cos 2 \varphi} & -i \frac{\mathrm{ImH}_{12}^{\mathrm{S}}}{\sin 2 \varphi}
\end{array}\right)
$$

- Unitary transformation: $\hat{\mathrm{U}}=e^{i \varphi \hat{\sigma}_{y}} e^{i \tau 2 \hat{\sigma}_{z}}$ with $\tan 2 \varphi=\frac{2}{\cos \tau} \frac{\mathrm{ImH}_{12}^{\mathrm{S}}}{\operatorname{Im}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right)}$
\rightarrow Talk by Uwe Günther

