CITY UNIVERSITY LONDON

PT-symmetry breaking in complex nonlinear wave equations and their deformations

Andreas Fring

Quantum Physics with Non-Hermitian Operators Max Planck Institute, Dresden 15-25 June 2011

Andrea Cavaglia (City University), Bijan Bagchi (Calcutta University)

CITY UNIVERSITY LONDON

PT-symmetry breaking in complex nonlinear wave equations and their deformations

Andreas Fring

Quantum Physics with Non-Hermitian Operators Max Planck Institute, Dresden 15-25 June 2011
based on arXiv:1103.1832 (accepted for publ. in J. Phys. A.) Andrea Cavaglia (City University), Bijan Bagchi (Calcutta University)

8th UK meeting on Integrable Models, Conformal Field Theory and Related Topics

Edinburgh, 16 \& 17 April 2004

Scientific Programme \& Timetable \mid Meeting Arrangements \mid Registration Form \mid Participants List

The proposed meeting is to be the eighth in a series of annual one-day meetings on this topic. The main aims of the meeting are:

- The dissemination, explanation and discussion of recent exciting results in this field.
- To promote communication and collaboration within the UK Integrable Models and Conformal Field Theory community, and to bring mathematicians and physicists working in this area together.
- To act as a forum for young researchers to present their work and to become known and integrated into the community.

Speakers:

Carl Bender (Washington)
Richard Blythe (Manchester)
Alexandre Caldeira (Oxford)
Vladimir Dobrev (Newcastle)
Andreas Fring (City)
Yiannis Papadimitriou (Amsterdam)

Integrable models and PT-symmetry

- Calogero-Moser-Sutherland models
- A. Fring, Mod. Phys. Lett. A21 (2006) 691
- A. Fring, Acta Polytechnica 47 (2007) 44
- A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
- P. Assis, A. Fring, J. Phys. A42 (2009) 425206
- P. Assis, A. Fring, J. Phys. A42 (2009) 105206
- A. Fring, Pramana J. of Physics 73 (2009) 363
- A. Fring, M. Smith, J. Phys. A43 (2010) 325201
- A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
- talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
- O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
- A. Fring, J. Phys. A40 (2007) 4215
- B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
- P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

Integrable models and PT-symmetry

- Calogero-Moser-Sutherland models
- A. Fring, Mod. Phys. Lett. A21 (2006) 691
- A. Fring, Acta Polytechnica 47 (2007) 44
- A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
- P. Assis, A. Fring, J. Phys. A42 (2009) 425206
- P. Assis, A. Fring, J. Phys. A42 (2009) 105206
- A. Fring, Pramana J. of Physics 73 (2009) 363
- A. Fring, M. Smith, J. Phys. A43 (2010) 325201
- A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
- talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
- O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
- A. Fring, J. Phys. A40 (2007) 4215
- B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
- P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

Integrable models and PT-symmetry

- Calogero-Moser-Sutherland models
- A. Fring, Mod. Phys. Lett. A21 (2006) 691
- A. Fring, Acta Polytechnica 47 (2007) 44
- A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
- P. Assis, A. Fring, J. Phys. A42 (2009) 425206
- P. Assis, A. Fring, J. Phys. A42 (2009) 105206
- A. Fring, Pramana J. of Physics 73 (2009) 363
- A. Fring, M. Smith, J. Phys. A43 (2010) 325201
- A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
- talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
- O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)

Integrable models and PT-symmetry

- Calogero-Moser-Sutherland models
- A. Fring, Mod. Phys. Lett. A21 (2006) 691
- A. Fring, Acta Polytechnica 47 (2007) 44
- A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
- P. Assis, A. Fring, J. Phys. A42 (2009) 425206
- P. Assis, A. Fring, J. Phys. A42 (2009) 105206
- A. Fring, Pramana J. of Physics 73 (2009) 363
- A. Fring, M. Smith, J. Phys. A43 (2010) 325201
- A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
- talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
- O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
- A. Fring, J. Phys. A40 (2007) 4215
- B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
- P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

- PI -symmetry

$$
[\mathcal{P} \mathcal{T}, H]=0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi=\Phi
$$

- spontaneously broken PI -symmetry

- broken PI -symmetry

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

- $\mathcal{P I}$-symmetry

$$
[\mathcal{P} \mathcal{T}, H]=0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi=\Phi
$$

- spontaneously broken PT -symmetry

- broken PI -symmetry

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

- $\mathcal{P T}$-symmetry

$$
[\mathcal{P} \mathcal{T}, H]=0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi=\Phi
$$

- spontaneously broken $\mathcal{P} \mathcal{T}$-symmetry

$$
[\mathcal{P} \mathcal{T}, H]=0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi \neq \Phi
$$

- broken PI-symmetry

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

- $\mathcal{P T}$-symmetry

$$
[\mathcal{P} \mathcal{T}, H]=0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi=\Phi
$$

- spontaneously broken $\mathcal{P} \mathcal{T}$-symmetry

$$
[\mathcal{P} \mathcal{T}, H]=0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi \neq \Phi
$$

- broken $\mathcal{P} \mathcal{T}$-symmetry

$$
[\mathcal{P} \mathcal{T}, H] \neq 0 \quad \text { and } \quad \mathcal{P} \mathcal{T} \Phi \neq \Phi
$$

Quantities of interest:

- energy

$$
E=\int_{-a}^{a} \mathcal{H}[u(x)] d x=\oint_{\Gamma} \mathcal{H}[u(x)] \frac{d u}{u_{x}}
$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

- energy

$$
E=\int_{-a}^{a} \mathcal{H}[u(x)] d x=\oint_{\Gamma} \mathcal{H}[u(x)] \frac{d u}{u_{x}}
$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

- energy

$$
E=\int_{-a}^{a} \mathcal{H}[u(x)] d x=\oint_{\Gamma} \mathcal{H}[u(x)] \frac{d u}{u_{x}}
$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

- energy

$$
E=\int_{-a}^{a} \mathcal{H}[u(x)] d x=\oint_{\Gamma} \mathcal{H}[u(x)] \frac{d u}{u_{x}}
$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

- energy

$$
E=\int_{-a}^{a} \mathcal{H}[u(x)] d x=\oint_{\Gamma} \mathcal{H}[u(x)] \frac{d u}{u_{x}}
$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Quantities of interest:

- energy

$$
E=\int_{-a}^{a} \mathcal{H}[u(x)] d x=\oint_{\Gamma} \mathcal{H}[u(x)] \frac{d u}{u_{x}}
$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

The KdV system:

Hamiltonian:

$$
\mathcal{H}_{\mathrm{KdV}}=-\frac{\beta}{6} u^{3}+\frac{\gamma}{2} u_{x}^{2} \quad \beta, \gamma \in \mathbb{C}
$$

equation of motion:

$$
u_{t}+\beta u u_{x}+\gamma u_{x x x}=0
$$

Antilinear symmetries:

The KdV system:

Hamiltonian:

$$
\mathcal{H}_{\mathrm{KdV}}=-\frac{\beta}{6} u^{3}+\frac{\gamma}{2} u_{x}^{2} \quad \beta, \gamma \in \mathbb{C}
$$

equation of motion:

$$
u_{t}+\beta u u_{x}+\gamma u_{x x x}=0
$$

Antilinear symmetries:

$$
\begin{array}{llll}
\mathcal{P} \mathcal{T}_{+} & : & x \mapsto-x, t \mapsto-t, i \mapsto-i, u \mapsto u & \text { for } \beta, \gamma \in \mathbb{R} \\
\mathcal{P} \mathcal{T}_{-} & : & x \mapsto-x, t \mapsto-t, i \mapsto-i, u \mapsto-u & \text { for } i \beta, \gamma \in \mathbb{R}
\end{array}
$$

- Integrating twice:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}-\frac{\beta}{6} u^{3}\right)=: \lambda P(u)
$$

with integration constants $\kappa_{1}, \kappa_{2} \in \mathbb{C}$

- traveling wave: $u(x, t)=u(\zeta)$ with $\zeta=x-c t$
- view this as a 2 dimensional dynamical systems:

- the fixed points are the zeros of $P(u)$:
- Integrating twice:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}-\frac{\beta}{6} u^{3}\right)=: \lambda P(u)
$$

with integration constants $\kappa_{1}, \kappa_{2} \in \mathbb{C}$

- traveling wave: $u(x, t)=u(\zeta)$ with $\zeta=x-c t$
- view this as a 2 dimensional dynamical systems:

- the fixed points are the zeros of $P(u)$:
- Integrating twice:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}-\frac{\beta}{6} u^{3}\right)=: \lambda P(u)
$$

with integration constants $\kappa_{1}, \kappa_{2} \in \mathbb{C}$

- traveling wave: $u(x, t)=u(\zeta)$ with $\zeta=x-c t$
- view this as a 2 dimensional dynamical systems:

$$
\begin{aligned}
u_{\zeta}^{R} & = \pm \operatorname{Re}\left[\sqrt{\lambda} \sqrt{P\left(u^{R}+i u^{\prime}\right)}\right] \\
u_{\zeta}^{\prime} & = \pm \operatorname{Im}\left[\sqrt{\lambda} \sqrt{P\left(u^{R}+i u^{\prime}\right)}\right]
\end{aligned}
$$

- the fixed points are the zeros of $P(u)$:
- Integrating twice:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}-\frac{\beta}{6} u^{3}\right)=: \lambda P(u)
$$

with integration constants $\kappa_{1}, \kappa_{2} \in \mathbb{C}$

- traveling wave: $u(x, t)=u(\zeta)$ with $\zeta=x-c t$
- view this as a 2 dimensional dynamical systems:

$$
\begin{aligned}
u_{\zeta}^{R} & = \pm \operatorname{Re}\left[\sqrt{\lambda} \sqrt{P\left(u^{R}+i u^{\prime}\right)}\right] \\
u_{\zeta}^{\prime} & = \pm \operatorname{Im}\left[\sqrt{\lambda} \sqrt{P\left(u^{R}+i u^{\prime}\right)}\right]
\end{aligned}
$$

- the fixed points are the zeros of $P(u)$:

$$
\begin{aligned}
u_{\zeta}^{R} & =0 \\
u_{\zeta}^{\prime} & =0
\end{aligned}
$$

Linearisation at the fixed point u_{f} :

$$
\binom{u_{\zeta}^{R}}{u_{\zeta}^{\prime}}=\left.J\left(u^{R}, u^{\prime}\right)\right|_{u=u_{f}}\binom{u_{\zeta}^{R}}{u_{\zeta}^{\prime}}
$$

with Jacobian matrix

$$
\left.J\left(u^{R}, u^{\prime}\right)\right|_{u=u_{f}}=\left.\left(\begin{array}{ll}
\pm \frac{\partial \operatorname{Re}[\sqrt{\lambda} \sqrt{P(u)}]}{\partial u^{P}} & \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda} \sqrt{P(u)}]}{\partial u^{\prime}} \\
\pm \frac{\partial \min [\sqrt{\lambda} \sqrt{P(u)]}}{\partial u^{P}} & \pm \frac{\partial \min [\sqrt{\lambda} \sqrt{P(u)}]}{\partial u^{P}}
\end{array}\right)\right|_{u=u_{f}}
$$

> Linearisation theorem: Consider a nonlinear system which possesses a simple linearisation at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of the linear system and its linearisation are qualitatively equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real
> part, i.e. the linearized system is not a centre.

Linearisation at the fixed point u_{f} :

$$
\binom{u_{\zeta}^{R}}{u_{\zeta}^{\prime}}=\left.J\left(u^{R}, u^{\prime}\right)\right|_{u=u_{f}}\binom{u_{\zeta}^{R}}{u_{\zeta}^{\prime}}
$$

with Jacobian matrix

$$
\left.J\left(u^{R}, u^{\prime}\right)\right|_{u=u_{f}}=\left.\left(\begin{array}{ll}
\pm \frac{\partial \operatorname{Re}[\sqrt{\lambda} \sqrt{P(u)}]}{\partial \operatorname{din}} & \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda} \sqrt{P(u)}]}{\partial u^{\prime}} \\
\pm \frac{\partial \min [\sqrt{\lambda} \sqrt{P(u)]}}{\partial u^{P}} & \pm \frac{\partial \min [\sqrt{\lambda} \sqrt{P(u)]}}{\partial u^{P}}
\end{array}\right)\right|_{u=u_{f}}
$$

Linearisation theorem: Consider a nonlinear system which possesses a simple linearisation at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of the linear system and its linearisation are qualitatively equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part, i.e. the linearized system is not a centre.

The ten similarity classes for J

$j_{i} \in \mathbb{R}$	$j_{1}>j_{2}>0$	unstable node
	$\dot{j}_{2}<j_{1}<0$	stable node
	$j_{2}<0<j_{1}$	saddle point
$j_{1}=j_{2}$, diagonal J	$\dot{j}_{i}>0$	unstable star node
	$j_{i}<0$	stable star node
$j_{1}=j_{2}$, nondiagonal J	$j_{i}>0$	unstable improper node
	$j_{i}<0$	stable improper node
$j_{i} \in \mathbb{C}$	$\operatorname{Re} j_{j}>0$	unstable focus
	$\operatorname{Re} j_{i}=0$	centre
	$\operatorname{Re} j_{i}<0$	stable focus

Further integration:

$$
\pm \sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int d u \frac{1}{\sqrt{P(u)}}
$$

assume: $P(u)=(u-A)^{3}$, which is possible for

then:
energy:

Further integration:

$$
\pm \sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int d u \frac{1}{\sqrt{P(u)}}
$$

assume: $P(u)=(u-A)^{3}$, which is possible for

$$
\lambda=-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=-\frac{c^{2}}{2 \beta}, \quad \kappa_{2}=\frac{c^{3}}{6 \beta^{2}} \quad \text { and } \quad A=\frac{c}{\beta}
$$

Further integration:

$$
\pm \sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int d u \frac{1}{\sqrt{P(u)}}
$$

assume: $P(u)=(u-A)^{3}$, which is possible for

$$
\lambda=-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=-\frac{c^{2}}{2 \beta}, \quad \kappa_{2}=\frac{c^{3}}{6 \beta^{2}} \quad \text { and } \quad A=\frac{c}{\beta}
$$

then:

$$
u(\zeta)=\frac{c}{\beta}-\frac{12 \gamma}{\beta\left(\zeta-\zeta_{0}\right)^{2}}
$$

energy:

$$
E_{a}=-\frac{a c^{2}}{3 \beta^{2}}\left(c+\frac{36 \gamma}{a^{2}-\zeta_{0}^{2}}\right)+\frac{72 \gamma^{2}}{15 \beta^{2}}\left[\frac{10 c\left(a^{3}+3 a \zeta_{0}^{2}\right)}{\left(a^{2}-\zeta_{0}^{2}\right)^{3}}-\frac{48 \gamma\left(a^{5}+10 a^{3} \zeta_{0}^{2}+5 a \zeta_{0}^{4}\right)}{\left(a^{2}-\zeta_{0}^{2}\right)^{5}}\right]
$$

(a) $\mathcal{P} \mathcal{T}$-symmetric: $\boldsymbol{c}=1, \beta=2, \gamma=3, A=1 / 2$
(b) broken $\mathcal{P} \mathcal{T}$-symmetry: $c=1, \beta=2+i 2, \gamma=3, A=\frac{1-i}{4}$

The energy is real for (a) and complex for (b).
assume: $P(u)=(u-A)^{2}(u-B)$, which is possible for
$\lambda=-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=\frac{A}{2}(\beta A-2 c), \quad \kappa_{2}=\frac{A^{2}}{6}(3 c-2 \beta A), \quad B=\frac{3 c}{\beta}-2 A$
then (with one free parameter):
linearisation: $\left(A-B=r_{A B} e^{i \theta_{A B}}, \lambda=r_{\lambda} e^{i \theta_{\lambda}}\right)$ $J(A)=\left(\begin{array}{ll} \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\begin{array}{ll}\left.\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \mp \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] \\ \pm \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\begin{array}{l}1 \\ 2\end{array}\left(\theta_{A B}+\theta_{\lambda}\right)\right]\end{array}\right)\end{array}\right.$

with eigenvalues

assume: $P(u)=(u-A)^{2}(u-B)$, which is possible for
$\lambda=-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=\frac{A}{2}(\beta A-2 c), \quad \kappa_{2}=\frac{A^{2}}{6}(3 c-2 \beta A), \quad B=\frac{3 c}{\beta}-2 A$
then (with one free parameter):

$$
u(\zeta)=B+(A-B) \tanh ^{2}\left[\frac{1}{2} \sqrt{A-B} \sqrt{\lambda}\left(\zeta-\zeta_{0}\right)\right]
$$

linearisation: $\left(A-B=r_{A B} e^{i \theta_{A B}}, \lambda=r_{\lambda} e^{i \theta_{\lambda}}\right)$ $J(A)=\left(\begin{array}{cc} \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \mp \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] \\ \pm \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right]\end{array}\right)$

with eigenvalues

assume: $P(u)=(u-A)^{2}(u-B)$, which is possible for
$\lambda=-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=\frac{A}{2}(\beta A-2 c), \quad \kappa_{2}=\frac{A^{2}}{6}(3 c-2 \beta A), \quad B=\frac{3 c}{\beta}-2 A$
then (with one free parameter):

$$
u(\zeta)=B+(A-B) \tanh ^{2}\left[\frac{1}{2} \sqrt{A-B} \sqrt{\lambda}\left(\zeta-\zeta_{0}\right)\right]
$$

linearisation: $\left(A-B=r_{A B} e^{i \theta_{A B}}, \lambda=r_{\lambda} e^{i \theta_{\lambda}}\right)$
$J(A)=\left(\begin{array}{cc} \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \mp \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] \\ \pm \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right]\end{array}\right)$
with eigenvalues

$$
\begin{aligned}
& j_{1}= \pm \sqrt{r_{A B} r_{\lambda}} \exp \left[\frac{i}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] \\
& j_{2}= \pm \sqrt{r_{A B} r_{\lambda}} \exp \left[-\frac{i}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right]
\end{aligned}
$$

assume: $P(u)=(u-A)^{2}(u-B)$, which is possible for
$\lambda=-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=\frac{A}{2}(\beta A-2 c), \quad \kappa_{2}=\frac{A^{2}}{6}(3 c-2 \beta A), \quad B=\frac{3 c}{\beta}-2 A$
then (with one free parameter):

$$
u(\zeta)=B+(A-B) \tanh ^{2}\left[\frac{1}{2} \sqrt{A-B} \sqrt{\lambda}\left(\zeta-\zeta_{0}\right)\right]
$$

linearisation: $\left(A-B=r_{A B} e^{i \theta_{A B}}, \lambda=r_{\lambda} e^{i \theta_{\lambda}}\right)$
$J(A)=\left(\begin{array}{cc} \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \mp \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] \\ \pm \sqrt{r_{A B} r_{\lambda}} \sin \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] & \pm \sqrt{r_{A B} r_{\lambda}} \cos \left[\frac{1}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right]\end{array}\right)$
with eigenvalues ($\in \mathbb{i}$ for $A<B, \lambda>0$ or $A>B, \lambda<0$)

$$
\begin{aligned}
& j_{1}= \pm \sqrt{r_{A B} r_{\lambda}} \exp \left[\frac{i}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right] \\
& j_{2}= \pm \sqrt{r_{A B} r_{\lambda}} \exp \left[-\frac{i}{2}\left(\theta_{A B}+\theta_{\lambda}\right)\right]
\end{aligned}
$$

Energy for the periodic motion for one period:
$E_{T}=\oint_{\Gamma} \mathcal{H}[u(\zeta)] \frac{d u}{u_{\zeta}}=\oint_{\Gamma} \frac{\mathcal{H}[u]}{\sqrt{\lambda} \sqrt{u-B}(u-A)} d u=-\pi \sqrt{\frac{\beta \gamma}{3}} \frac{A^{3}}{\sqrt{A-B}}$
In general:

- $E_{T} \in \mathbb{R}$ for $\mathcal{P T}$-symmetric solution
- $E_{T} \in \mathbb{C}$ for spontaneously broken $\mathcal{P T}$-symmetric solution
- $E_{T} \in \mathbb{C}$ for broken $\mathcal{P} \mathcal{T}$-symmetric solution

But:

Energy for the periodic motion for one period:

$$
E_{T}=\oint_{\Gamma} \mathcal{H}[u(\zeta)] \frac{d u}{u_{\zeta}}=\oint_{\Gamma} \frac{\mathcal{H}[u]}{\sqrt{\lambda} \sqrt{u-B}(u-A)} d u=-\pi \sqrt{\frac{\beta \gamma}{3}} \frac{A^{3}}{\sqrt{A-B}}
$$

In general:

- $E_{T} \in \mathbb{R}$ for $\mathcal{P T}$-symmetric solution
- $E_{T} \in \mathbb{C}$ for spontaneously broken $\mathcal{P} \mathcal{T}$-symmetric solution
- $E_{T} \in \mathbb{C}$ for broken $\mathcal{P T}$-symmetric solution

Energy for the periodic motion for one period:

$$
E_{T}=\oint_{\Gamma} \mathcal{H}[u(\zeta)] \frac{d u}{u_{\zeta}}=\oint_{\Gamma} \frac{\mathcal{H}[u]}{\sqrt{\lambda} \sqrt{u-B}(u-A)} d u=-\pi \sqrt{\frac{\beta \gamma}{3}} \frac{A^{3}}{\sqrt{A-B}}
$$

In general:

- $E_{T} \in \mathbb{R}$ for $\mathcal{P T}$-symmetric solution
- $E_{T} \in \mathbb{C}$ for spontaneously broken $\mathcal{P T}$-symmetric solution
- $E_{T} \in \mathbb{C}$ for broken $\mathcal{P T}$-symmetric solution

But:

$$
E_{T} \in \mathbb{R} \quad \text { for } A=\frac{\sin \theta_{\gamma}}{|\beta| \sin \left(\theta_{\gamma}-2 \theta_{\beta} / 3\right)} \exp \left(-i \frac{\theta_{\beta}}{3}\right) .
$$

$\mathcal{P T}$-symmetric solution:

(a) periodic: $c=1, \beta=3 / 10, \gamma=3, A=4, B=2, T=2 \sqrt{15} \pi$
(b) asympt. constant: $c=1, \beta=3 / 10, \gamma=-3, A=4, B=2$

$\mathcal{P T}$-symmetric solution:

(a) periodic: $c=1, \beta=3 / 10, \gamma=3, A=4, B=2, T=2 \sqrt{15} \pi$
(b) asympt. constant: $c=1, \beta=3 / 10, \gamma=-3, A=4, B=2$
$E_{T} \in \mathbb{R}$
spontaneously broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) periodic: $\boldsymbol{c}=1, \beta=\frac{3}{10}, \gamma=3, A=4+\frac{i}{2}$ and $B=2-i$ for $\operatorname{Im} \zeta_{0}=0.5$ black, $\operatorname{Im} \zeta_{0}=0.3$ green $\operatorname{Im} \zeta_{0}=0.1$ blue (b) asympt. constant: $C=1, \beta=\frac{3}{10}, \gamma=-3$ for $A=4-\frac{i}{2}$, $B=2+i \operatorname{Im} \zeta_{0}=-0.5$ black; $A=A^{*}, B=B^{*}, \operatorname{Im} \zeta_{0}=0.5$ blue
spontaneously broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) periodic: $\boldsymbol{c}=1, \beta=\frac{3}{10}, \gamma=3, A=4+\frac{i}{2}$ and $B=2-i$ for $\operatorname{Im} \zeta_{0}=0.5$ black, $\operatorname{Im} \zeta_{0}=0.3$ green $\operatorname{Im} \zeta_{0}=0.1$ blue (b) asympt. constant: $C=1, \beta=\frac{3}{10}, \gamma=-3$ for $A=4-\frac{i}{2}$, $B=2+i \operatorname{Im} \zeta_{0}=-0.5$ black; $A=A^{*}, B=B^{*}, \operatorname{Im} \zeta_{0}=0.5$ blue $E_{T} \in \mathbb{C}$

broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) periodic: $A=4, B=2, c=1, \beta=\frac{3}{10}, \gamma=3+\frac{i}{2}, \operatorname{Im} \zeta_{0}=6$
(b) asympt. constant: $A=4, B=2, c=1, \beta=\frac{3}{10}, \gamma=-3+\frac{i}{2}$,
$\operatorname{Im} \zeta_{0}=1 / 2$

broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) periodic: $A=4, B=2, c=1, \beta=\frac{3}{10}, \gamma=3+\frac{i}{2}, \operatorname{Im} \zeta_{0}=6$
(b) asympt. constant: $A=4, B=2, c=1, \beta=\frac{3}{10}, \gamma=-3+\frac{i}{2}$,
$\operatorname{Im} \zeta_{0}=1 / 2$
$E_{T} \in \mathbb{C}$

broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) periodic solution with complex energy $E_{T}=-10.52+i 1.67$
(b) periodic solution with real energy $E_{T}=-4 \pi$
assume: $P(u)=(u-A)(u-B)(u-C)$, which is possible for

$$
\begin{aligned}
\lambda & =-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=\frac{1}{6}\left[\beta\left(A^{2}+A C+C^{2}\right)-3 c(A-C)\right] \\
\kappa_{2} & =\frac{A C}{6}[3 c-\beta(A+C)] \quad \text { and } \quad B=\frac{3 C}{\beta}-(A+C)
\end{aligned}
$$

then (with two free parameter):

assume: $P(u)=(u-A)(u-B)(u-C)$, which is possible for

$$
\begin{aligned}
\lambda & =-\frac{\beta}{3 \gamma}, \quad \kappa_{1}=\frac{1}{6}\left[\beta\left(A^{2}+A C+C^{2}\right)-3 c(A-C)\right] \\
\kappa_{2} & =\frac{A C}{6}[3 c-\beta(A+C)] \quad \text { and } \quad B=\frac{3 C}{\beta}-(A+C)
\end{aligned}
$$

then (with two free parameter):

$$
u(\zeta)=A+(B-A) \mathrm{ns}^{2}\left[\left.\frac{1}{2} \sqrt{B-A} \sqrt{\lambda}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{A-C}{A-B}\right]
$$

$\mathcal{P} \mathcal{T}$-symmetric solution:

$A=1, B=3, C=6, C=1, \beta=3 / 10, \gamma=-3$

spontaneously broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) $-64 \leq \zeta \leq 18$ solid (red) and $18<\zeta \leq 200$ dashed (black)
(b) $-200<\zeta<1400$

broken $\mathcal{P} \mathcal{T}$-symmetric solution:

(a) $A=1, B=3, C=6, c=1, \beta=3 / 10$ and $\gamma=3+2 i$ for $-200 \leq \zeta \leq 200$;
(b) $A=1, B=2+3 i, C=6, c=1, \beta=3 / 10-i / 10$ and $\gamma=3$
for $-200 \leq \zeta \leq 200$

Reduction to quantum mechanical Hamiltonians:

For instance:

$$
u \rightarrow x, \quad \zeta \rightarrow t, \quad \kappa_{1}=0, \quad \kappa_{2}=\gamma E, \quad \beta=6 c g, \quad \gamma=-c
$$

converts

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}-\frac{\beta}{6} u^{3}\right)
$$

into Newton's equations for

$$
H=E=\frac{1}{2} p^{2}+\frac{1}{2} x^{2}-g x^{3}
$$

treated in
[C. Bender, D. Brody, D. Hook, Phys. A41 (2008) 352003]

Soliton solutions:

Hirota's bilinear method $\left(u(x, t)=\frac{12 \gamma}{\beta}(\ln \tau)_{x x}\right)$

$$
\frac{6 \gamma}{\beta}\left(\gamma D_{x}^{4}+D_{x} D_{t}\right) \tau \cdot \tau=0
$$

one soliton solution:

$$
u(x, t)=\frac{3 \gamma p_{1}^{2}}{\beta \cosh ^{2}\left[\frac{1}{2}\left(p_{1} x-\gamma p_{1}^{3} t+\phi_{1}\right)\right]}
$$

two soliton solution:

$$
u(x, t)=\frac{24 \gamma \sum_{k=0}^{6} c_{k}(-1)^{k} p_{2}^{k} p_{1}^{6-k}}{\beta\left(p_{1}+p_{2}\right)^{4}\left[2 \cosh \left(\frac{1}{2}\left(\eta_{1}-\eta_{2}\right)\right)+e^{-\frac{\eta_{1}}{2}-\frac{\eta_{2}}{2}}\left(\frac{e^{\eta_{1}+\eta_{2}\left(p_{1}-p_{2}\right)^{4}}}{\left(p_{1}+p_{2}\right)^{4}}+1\right)\right]^{2}}
$$

where we abbreviated $\eta_{i}=p_{i} x-\gamma p_{i}^{3} t+\phi_{i}$ for $i=1,2$ with

$$
c_{0}=1+\cosh \eta_{2}, \quad c_{1}=4 \sinh \eta_{2}, \quad c_{2}=\cosh \eta_{1}+6 \cosh \eta_{2}-1, \quad c_{3}=4\left(\sinh \eta_{1}+\sinh \eta_{2}\right)
$$

and $c_{i}\left(\eta_{1}, \eta_{2}\right)=c_{6-i}\left(\eta_{2}, \eta_{1}\right)$

$\mathcal{P} \mathcal{T}$-symmetric complex one-soliton solution

$$
0.4
$$

(a) $\mathcal{P} \mathcal{T}$-symmetric solution with $\beta=6, \gamma=1, p_{1}=1.2$ for $\phi=i 0.3$ blue, $\phi=i 0.8$ red, $\phi=i 1.1$ black, $t=-2$
(b) Broken $\mathcal{P} \mathcal{T}$-symmetric solution $\beta=6, \gamma=1+i 0.4, p_{1}=1.2$ for $\phi=i 0.3$ blue, $\phi=i 0.8$ red, $\phi=i 1.1$ black $t=-2$

$\mathcal{P} \mathcal{T}$-symmetric complex one-soliton solution

$\beta=6, \gamma=1, p_{1}=1.2, \phi=i 0.3$,

Complex one-soliton solution with broken $\mathcal{P} \mathcal{T}$-symmetry

$$
\beta=6, \gamma=1+i 0.4, p_{1}=1.2, \phi=i 0.3
$$

We obtain a breather regaining its shape when:

$$
u\left(x+\Delta_{x}, t\right)=u\left(x, t+\Delta_{t}\right)
$$

with

$$
\begin{aligned}
\Delta_{t} & =\frac{2 \pi p_{r}}{\left(p_{i}^{4}-p_{r}^{4}\right) \gamma_{i}-2 p_{i} p_{r}\left(p_{i}^{2}+p_{r}^{2}\right) \gamma_{r}} \\
\Delta_{x} & =2 \pi \frac{p_{i}\left(3 p_{r}^{2}-p_{i}^{2}\right) \gamma_{i}+2 \pi p_{r}\left(3 p_{i}^{2}-p_{r}^{2}\right) \gamma_{r}}{\left(p_{i}^{4}-p_{r}^{4}\right) \gamma_{i}-2 p_{i} p_{r}\left(p_{i}^{2}+p_{r}^{2}\right) \gamma_{r}}
\end{aligned}
$$

speed of the soliton:

$$
v=-\frac{\Delta_{x}}{\Delta_{t}}=\left(3 p_{i}^{2}-p_{r}^{2}\right) \gamma_{r}-\frac{p_{i}\left(p_{i}^{2}-3 p_{r}^{2}\right) \gamma_{i}}{p_{r}}
$$

Complex one-soliton solution with broken $\mathcal{P} \mathcal{T}$-symmetry

$\beta=6, \gamma=1+i / 2, p_{1}=2, \phi=i 0.8$ and $\Delta_{t}=-\pi / 2$ for different times $t=-\pi / 2$ solid (blue), $t=-1$ dashed (red), $t=0$ dasheddot (orange), $t=0.7$ dotted (green), and $t=\pi / 2$ dasheddotdot (black) (a) real part; (b) imaginary part
$\mathcal{P} \mathcal{T}$-symmetric two soliton solution

$\beta=6, \gamma=1, p_{1}=1.2, p_{2}=2.2, \phi_{1}=i 0.1$ and $\phi_{2}=i 0.2$. (a)
$t=-2$ solid (blue), $t=-0.2$ dashed (red), $t=0.2$ dotted (black); (b) $t=0.3$ dotted (black), $t=0.8$ dashed (red), $t=2.0$ solid (blue)

Two soliton solution with broken $\mathcal{P} \mathcal{T}$-symmetry

$\beta=6, \gamma=1+i \pi / 8, p_{1}=2(2 / 3)^{1 / 3}, p_{2}=2, \phi_{1}=i 0.1$ and $\phi_{2}=i 0.2$. (a) $t=-4$ solid (blue), $t=-3.5$ dashed (red),
$t=-2$. dotted (black); (b) $t=0.7$ solid (blue), $t=2$ dashed
(red), $t=8$ dotted (black)
$\Delta_{t}^{1}=-3, \Delta_{t}^{2}=-2$,

$\mathcal{P} \mathcal{T}$-symmetric complex two-soliton solution

Real part for: $\beta=6, \gamma=1, p_{1}=1.2, p_{2}=2.2, \phi_{1}=i 0.1$, $\phi_{2}=i 0.2$

Complex two-soliton solution with broken $\mathcal{P} \mathcal{T}$-symmetry

Real part for: $\beta=6, \gamma=1+i \pi / 8, p_{1}=2(2 / 3)^{1 / 3}, p_{2}=2$, $\phi_{1}=i 0.1$ and $\phi_{2}=i 0.2$

Energy for the one-soliton:

$$
E_{1 s}=-\frac{36 \gamma^{3} p_{1}^{5}}{5 \beta^{2}}
$$

Energy for the two-soliton:

- $\mathcal{P T}$-symmetric case:

$$
E_{2 s} \approx-10.8049=E_{1 s}\left(p_{1}\right)+E_{1 s}\left(p_{2}\right)
$$

- Broken $\mathcal{P T}$-symmetric case:

$$
E_{2 s} \approx-7.8876-i 9.4327=E_{1 s}\left(p_{1}\right)+E_{1 s}\left(p_{2}\right)
$$

General deformation prescription:

$\mathcal{P} \mathcal{T}$-anti-symmetric quantities:

$$
\mathcal{P} \mathcal{T}: \phi(x, t) \mapsto-\phi(x, t) \quad \Rightarrow \quad \delta_{\varepsilon}: \phi(x, t) \mapsto-i[i \phi(x, t)]^{\varepsilon}
$$

Two possibilities for the KdV Hamiltonian
$\delta_{\varepsilon}^{+}: u_{x} \mapsto u_{x, \varepsilon}:=-i\left(i u_{x}\right)^{\varepsilon} \quad$ or $\quad \delta_{\varepsilon}^{-}: u \mapsto u_{\varepsilon}:=-i(i u)^{\varepsilon}$,
such that
$\mathcal{H}_{\varepsilon}^{+}=-\frac{\beta}{6} u^{3}-\frac{\gamma}{1+\varepsilon}\left(i u_{x}\right)^{\varepsilon+1}$

$$
\mathcal{H}_{\varepsilon}^{-}=\frac{\beta}{(1+\varepsilon)(2+\varepsilon)}(i u)^{\varepsilon+2}+\frac{\gamma}{2} u_{x}^{2}
$$

with equations of motion

$$
u_{t}+\beta u u_{x}+\gamma u_{x x x, \varepsilon}=0 \quad u_{t}+i \beta u_{\varepsilon} u_{x}+\gamma u_{x x x}=0
$$

The $\mathcal{H}_{\varepsilon}^{+}$-models Integrating twice yields now:

$$
u_{\zeta}^{(n)}=\exp \left[\frac{i \pi}{2(\varepsilon+1)}(1-\varepsilon+4 n)\right]\left[\lambda_{\varepsilon} P(u)\right)^{\frac{1}{1+\varepsilon}}
$$

Again we can construct systematically solutions by assuming:
$P(u)=(u-A)^{3}$,
$P(u)=(u-A)^{2}(u-B)$,
$P(u)=(u-A)(u-B)(u-C)$
but now we have branch cuts.
For instance:

The $\mathcal{H}_{\varepsilon}^{+}$-models
Integrating twice yields now:

$$
u_{\zeta}^{(n)}=\exp \left[\frac{i \pi}{2(\varepsilon+1)}(1-\varepsilon+4 n)\right]\left[\lambda_{\varepsilon} P(u)\right]^{\frac{1}{1+\varepsilon}}
$$

Again we can construct systematically solutions by assuming:

$$
\begin{aligned}
& P(u)=(u-A)^{3} \\
& P(u)=(u-A)^{2}(u-B), \\
& P(u)=(u-A)(u-B)(u-C)
\end{aligned}
$$

but now we have branch cuts.
For instance:

Broken $\mathcal{P} \mathcal{T}$-symmetric rational solutions for $\mathcal{H}_{1 / 3}^{+}$

Different Riemann sheets for $A=(1-i) / 4, c=1, \beta=2+2 i$ and $\gamma=3$
(a) $u^{(1)}$
(b) $u^{(2)}$

$\mathcal{P} \mathcal{T}$-symmetric trigonometric/hyperbolic solutions

$A=4, B=2, c=1, \beta=2$ and $\gamma=3$
(a) $\mathcal{H}_{-1 / 2}^{+}$
(b) $\mathcal{H}_{-2 / 3}^{+}$

The $\mathcal{H}_{\varepsilon}^{+}$-models

Broken $\mathcal{P} \mathcal{T}$-symmetric trigonometric solutions for $\mathcal{H}_{-1 / 2}^{+}$

(a) Spontaneously broken $\mathcal{P} \mathcal{T}$-symmetry with $A=4+i$, $B=2-2 i, c=1, \beta=3 / 10$ and $\gamma=3$
(b) broken $\mathcal{P} \mathcal{T}$-symmetry with $A=4, B=2, c=1, \beta=3 / 10$ and $\gamma=3+i$

The $\mathcal{H}_{\varepsilon}^{+}$-models

Elliptic solutions for $\mathcal{H}_{-1 / 2}^{+}$:

(a) $\mathcal{P} \mathcal{T}$-symmetric with $A=1, B=3, C=6, \beta=3 / 10, \gamma=-3$ and $c=1$
(b) spontaneously broken $\mathcal{P} \mathcal{T}$-symmetry with $A=1+i$,
$B=3-i, C=6, \beta=3 / 10, \gamma=-3$ and $c=1$

The $\mathcal{H}_{\varepsilon}^{-}$-models
Integrating twice gives now:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}-\beta \frac{i^{\varepsilon}}{(1+\varepsilon)(2+\varepsilon)} u^{2+\varepsilon}\right)=: \lambda Q(u)
$$

where

$$
\lambda=-\frac{2 \beta i^{\varepsilon}}{\gamma(1+\varepsilon)(2+\varepsilon)}
$$

For $\kappa_{1}=\kappa_{2}=0$

$$
u(\zeta)=\left(\frac{c(\varepsilon+1)(\varepsilon+2)}{i \varepsilon \beta\left[\cosh \left(\frac{\sqrt{c} \varepsilon\left(\zeta-\zeta_{0}\right)}{\sqrt{\gamma}}\right)+1\right]}\right)^{1 / \varepsilon}
$$

- \mathcal{H}_{2}^{-}:
\equiv complex version of the modified KdV-equation
assume $Q(u)=u^{2}\left(u^{2}-B^{2}\right)\left(u^{2}-C^{2}\right)$, possible for

eigenvalues of Jacobian:

- \mathcal{H}_{2}^{-}:
\equiv complex version of the modified KdV-equation
- \mathcal{H}_{4}^{-}:
assume $Q(u)=u^{2}\left(u^{2}-B^{2}\right)\left(u^{2}-C^{2}\right)$, possible for

$$
\kappa_{1}=\kappa_{2}=0, \quad B=i C \quad \text { and } \quad C^{4}=\frac{15 c}{\beta}
$$

eigenvalues of Jacobian:

- \mathcal{H}_{2}^{-}:
\equiv complex version of the modified KdV-equation
- \mathcal{H}_{4}^{-}:
assume $Q(u)=u^{2}\left(u^{2}-B^{2}\right)\left(u^{2}-C^{2}\right)$, possible for

$$
\kappa_{1}=\kappa_{2}=0, \quad B=i C \quad \text { and } \quad C^{4}=\frac{15 c}{\beta}
$$

eigenvalues of Jacobian:

$$
\begin{aligned}
& j_{1}= \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[\frac{i}{2}\left(4 \theta_{B}+\theta_{\lambda}\right)\right] \\
& j_{2}=\mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp \left[-\frac{i}{2}\left(4 \theta_{B}+\theta_{\lambda}\right)\right]
\end{aligned}
$$

Broken $\mathcal{P} \mathcal{T}$-symmetric solution for \mathcal{H}_{4}^{-}:

(a) star node at the origin for $c=1, \beta=2+i 3, \gamma=1$ and
$B=(15 / 2+i 3)^{1 / 4}$
(b) centre at the origin for $c=1, \beta=2+i 3, \gamma=-1$ and $B=(30 / 13-i 45 / 13)^{1 / 4}$

Reduction to quantum mechanical Hamiltonians:

Again we can relate to simple quantum mechanical models:
The identification
$u \rightarrow x, \quad \zeta \rightarrow t, \quad \kappa_{1}=0, \quad \kappa_{2}=\gamma E, \quad$ and $\quad \beta=\gamma g(1+\varepsilon)(2+\varepsilon)$
relates $\mathcal{H}_{\varepsilon}^{-}$to

$$
H=E=\frac{1}{2} p^{2}-\frac{c}{2 \gamma} x^{2}+g x^{2}(i x)^{\varepsilon}
$$

For $c=0$ these are the "classical models" studied in
[C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]

Reduction of the \mathcal{H}_{2}^{-}-model

$$
\mathcal{H}_{2}^{-}[u]=\frac{\beta}{12} u^{4}+\frac{\gamma}{2} u_{x}^{2}
$$

Twice integrated equation of motion:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}+\beta \frac{1}{12} u^{4}\right)=: \lambda Q(u)
$$

Reduction $u \rightarrow x, \zeta \rightarrow t$

Quartic harmonic oscillator of the form

Boundary cond.: $\kappa_{1}=\tau=0, \lim u(\zeta)=0, \lim u_{x}(\zeta)=\sqrt{2 E_{x}}$ [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Reduction of the \mathcal{H}_{2}^{-}-model

$$
\mathcal{H}_{2}^{-}[u]=\frac{\beta}{12} u^{4}+\frac{\gamma}{2} u_{x}^{2}
$$

Twice integrated equation of motion:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}+\beta \frac{1}{12} u^{4}\right)=: \lambda Q(u)
$$

Reduction $u \rightarrow x, \zeta \rightarrow t$

$$
\kappa_{1}=-\gamma \tau, \quad \kappa_{2}=\gamma E_{x}, \quad \beta=-3 \gamma g \quad \text { and } \quad c=-\gamma \omega^{2}
$$

Quartic harmonic oscillator of the form

$$
H=E_{x}=\frac{1}{2} p^{2}+\tau x+\frac{\omega^{2}}{2} x^{2}+\frac{g}{4} x^{4}
$$

Boundary cond.: $\kappa_{1}=\tau=0, \lim _{\zeta \rightarrow \infty} u(\zeta)=0, \lim _{\zeta \rightarrow \infty} u_{x}(\zeta)=\sqrt{2 E_{x}}$
[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Reduction of the \mathcal{H}_{2}^{-}-model

$$
\mathcal{H}_{2}^{-}[u]=\frac{\beta}{12} u^{4}+\frac{\gamma}{2} u_{x}^{2}
$$

Twice integrated equation of motion:

$$
u_{\zeta}^{2}=\frac{2}{\gamma}\left(\kappa_{2}+\kappa_{1} u+\frac{c}{2} u^{2}+\beta \frac{1}{12} u^{4}\right)=: \lambda Q(u)
$$

Reduction $u \rightarrow x, \zeta \rightarrow t$

$$
\kappa_{1}=-\gamma \tau, \quad \kappa_{2}=\gamma E_{x}, \quad \beta=-3 \gamma g \quad \text { and } \quad c=-\gamma \omega^{2}
$$

Quartic harmonic oscillator of the form

$$
H=E_{x}=\frac{1}{2} p^{2}+\tau x+\frac{\omega^{2}}{2} x^{2}+\frac{g}{4} x^{4}
$$

Boundary cond.: $\kappa_{1}=\tau=0, \lim _{\zeta \rightarrow \infty} u(\zeta)=0, \lim _{\zeta \rightarrow \infty} u_{x}(\zeta)=\sqrt{2 E_{X}}$
[A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

$$
\text { Note }: \quad E_{x} \neq E_{u}(a)
$$

Assuming: $Q(u)=(u-A)^{2}(u-B)(u-C)$

$$
u(\zeta)=A+\frac{3(\vartheta-2 c)}{\vartheta e^{\sqrt{\frac{g-2 c}{\gamma}\left(\zeta-\zeta_{0}\right)}-A \beta-e^{-\sqrt{\frac{v-2 c}{\gamma}}\left(\zeta-\zeta_{0}\right)} \beta / 8}}
$$

$\vartheta:=3 c+\beta A^{2}$
Reduced solution:

Assuming: $Q(u)=(u-A)^{2}(u-B)(u-C)$

$$
u(\zeta)=A+\frac{3(\vartheta-2 c)}{\vartheta e^{\sqrt{\frac{v-2 c}{\gamma}}\left(\zeta-\zeta_{0}\right)}-A \beta-e^{-\sqrt{\frac{v-2 c}{\gamma}}\left(\zeta-\zeta_{0}\right)} \beta / 8}
$$

$\vartheta:=3 c+\beta A^{2}$
Reduced solution:

$$
\begin{gathered}
\vartheta=0 \quad E_{x}=-\frac{\omega^{4}}{4 g} \quad \text { and } \quad A=i \frac{\omega}{\sqrt{g}} \\
x(t)=\frac{\omega}{\sqrt{-g}} \tanh \left[\frac{\omega\left(t+t_{0}\right)}{\sqrt{2}}\right]
\end{gathered}
$$

Linearisation about the fixed point A : Eigenvalues of the Jacobian matrix

$$
j_{1}= \pm r_{A} \sqrt{r_{\lambda}} \exp \left[\frac{i}{2}\left(2 \theta_{A}+\theta_{\lambda}\right)\right] \quad j_{2}= \pm r_{A} \sqrt{r_{\lambda}} \exp \left[-\frac{i}{2}\left(2 \theta_{A}+\theta_{\lambda}\right)\right]
$$

Linearisation about the fixed point A : Eigenvalues of the Jacobian matrix
$j_{1}= \pm r_{A} \sqrt{r_{\lambda}} \exp \left[\frac{i}{2}\left(2 \theta_{A}+\theta_{\lambda}\right)\right] \quad j_{2}= \pm r_{A} \sqrt{r_{\lambda}} \exp \left[-\frac{i}{2}\left(2 \theta_{A}+\theta_{\lambda}\right)\right]$
Recall: $E_{X}=-\frac{\omega^{4}}{4 g}, \lambda=\frac{\beta}{6 \gamma}$
Condition for A to be a centre: $2 \theta_{A}+\theta_{\lambda}=\pi$
Condition for E_{X} to be real: $4 \theta_{\omega}-\theta_{g}=0, \pi$

Linearisation about the fixed point A :
Eigenvalues of the Jacobian matrix
$j_{1}= \pm r_{A} \sqrt{r_{\lambda}} \exp \left[\frac{i}{2}\left(2 \theta_{A}+\theta_{\lambda}\right)\right] \quad j_{2}= \pm r_{A} \sqrt{r_{\lambda}} \exp \left[-\frac{i}{2}\left(2 \theta_{A}+\theta_{\lambda}\right)\right]$
Recall: $E_{X}=-\frac{\omega^{4}}{4 g}, \lambda=\frac{\beta}{6 \gamma}$
Condition for A to be a centre: $2 \theta_{A}+\theta_{\lambda}=\pi$
Condition for E_{X} to be real: $4 \theta_{\omega}-\theta_{g}=0, \pi$
All possible scenarios exist:
periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies
for $\omega \in \mathbb{R}, g \in \mathbb{R}$
for $\omega \in \mathbb{R}, g \notin \mathbb{R}$
for $\omega \notin \mathbb{R}, \omega^{4} / g \in \mathbb{R}$
for $\omega \notin \mathbb{R}, \omega^{4} / g \notin \mathbb{R}$

(a) Periodic orbits $E=-25 / 4$ for $g=4, \omega=i \sqrt{10}$
(b) Periodic orbits $E=-5+i 5 / 2$ for $g=4+2 i, \omega=i \sqrt{10}$

(a) Nonperiodic orbits $E=-25 / 4$ for $g=-4, \omega=e^{i \pi / 4} \sqrt{10}$
(b) Nonperiodic orbits $E=25 / 4 i$ for $g=-4 i, \omega=\sqrt{10}$

The quartic harmonic oscillator from complex modified KDV

Assuming: $Q(u)=(u-A)(u-B)(u-C)(u-D)$
Two free parameters in solution:

$$
u(\zeta)=\frac{B(A-D)+A(D-B) \operatorname{sn}\left[\left.\frac{\sqrt{\lambda(B-C)(A-D)}}{2}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{(A-C)(B-D)}{(B-C)(A-D)}\right]^{2}}{A-D+(D-B) \operatorname{sn}\left[\left.\frac{\sqrt{\lambda(B-C)(A-D)}}{2}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{(A-C)(B-D)}{(B-C)(A-D)}\right]^{2}}
$$

Reduction:

$$
x(t)=A \operatorname{sn}\left[\left(t+t_{0}\right) A \sqrt{2 E_{x}} \left\lvert\,-\frac{A^{4} g}{4 E_{x}}\right.\right]
$$

Square root singularity \Rightarrow no linearisation, alternatively $x(t)=x\left(t+n \omega_{1}+m \omega_{2}\right)$ for $n, m \in \mathbb{Z}$,

The quartic harmonic oscillator from complex modified KDV

Assuming: $Q(u)=(u-A)(u-B)(u-C)(u-D)$
Two free parameters in solution:

$$
u(\zeta)=\frac{B(A-D)+A(D-B) \operatorname{sn}\left[\left.\frac{\sqrt{\lambda(B-C)(A-D)}}{2}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{(A-C)(B-D)}{(B-C)(A-D)}\right]^{2}}{A-D+(D-B) \operatorname{sn}\left[\left.\frac{\sqrt{\lambda(B-C)(A-D)}}{2}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{(A-C C)(B-D)}{(B-C)(A-D)}\right]^{2}}
$$

Reduction:

$$
x(t)=A \operatorname{sn}\left[\left(t+t_{0}\right) A \sqrt{2 E_{x}} \left\lvert\,-\frac{A^{4} g}{4 E_{x}}\right.\right]
$$

Square root singularity \Rightarrow no linearisation, alternatively

Assuming: $Q(u)=(u-A)(u-B)(u-C)(u-D)$
Two free parameters in solution:

$$
u(\zeta)=\frac{B(A-D)+A(D-B) \operatorname{sn}\left[\left.\frac{\sqrt{\lambda(B-C)(A-D)}}{2}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{(A-C)(B-D)}{(B-C)(A-D)}\right]^{2}}{A-D+(D-B) \operatorname{sn}\left[\left.\frac{\sqrt{\lambda(B-C)(A-D)}}{2}\left(\zeta-\zeta_{0}\right) \right\rvert\, \frac{(A-C)(B-D)}{(B-C)(A-D)}\right]^{2}}
$$

Reduction:

$$
x(t)=A \operatorname{sn}\left[\left(t+t_{0}\right) A \sqrt{2 E_{X}} \left\lvert\,-\frac{A^{4} g}{4 E_{X}}\right.\right]
$$

Square root singularity \Rightarrow no linearisation, alternatively [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

$$
\begin{gathered}
x(t)=x\left(t+n \omega_{1}+m \omega_{2}\right) \quad \text { for } n, m \in \mathbb{Z}, \\
\omega_{1}=\frac{4 \sqrt{2}}{\sqrt{g A^{2}+2 \omega^{2}}} K\left[\frac{-A^{2} g}{g A^{2}+2 \omega^{2}}\right] \quad \omega_{2}=\frac{i 2 \sqrt{2}}{\sqrt{g A^{2}+2 \omega^{2}}} K\left[\frac{2 A^{2} g+2 \omega^{2}}{g A^{2}+2 \omega^{2}}\right] \\
n \operatorname{Im} \omega_{1}+m \operatorname{Im} \omega_{2}=0
\end{gathered}
$$

Note:
One needs $t \rightarrow t+i t_{0}, t_{0} \in \mathbb{R}$ to avoid pole $t=\left(n \omega_{1}+m \omega_{2}\right) / 2$

Ito type systems and its deformations

Coupled nonlinear system

$$
\begin{aligned}
u_{t}+\alpha v v_{x}+\beta u u_{x}+\gamma u_{x x x} & =0, & & \alpha, \beta, \gamma \in \mathbb{C} \\
v_{t}+\delta(u v)_{x}+\phi v_{x x x} & =0, & & \delta, \phi \in \mathbb{C}
\end{aligned}
$$

Hamiltonian for $\delta=\alpha$

$\mathcal{P I}$-symmetries:

Ito type systems and its deformations

Coupled nonlinear system

$$
\begin{aligned}
u_{t}+\alpha v v_{x}+\beta u u_{x}+\gamma u_{x x x} & =0, & & \alpha, \beta, \gamma \in \mathbb{C}, \\
v_{t}+\delta(u v)_{x}+\phi v_{x x x} & =0, & & \delta, \phi \in \mathbb{C}
\end{aligned}
$$

Hamiltonian for $\delta=\alpha$

$$
\mathcal{H}_{I}=-\frac{\alpha}{2} u v^{2}-\frac{\beta}{6} u^{3}+\frac{\gamma}{2} u_{x}^{2}+\frac{\phi}{2} v_{x}^{2}
$$

PI -symmetries:

Ito type systems and its deformations

Coupled nonlinear system

$$
\begin{aligned}
u_{t}+\alpha v v_{x}+\beta u u_{x}+\gamma u_{x x x} & =0, & & \alpha, \beta, \gamma \in \mathbb{C}, \\
v_{t}+\delta(u v)_{x}+\phi v_{x x x} & =0, & & \delta, \phi \in \mathbb{C}
\end{aligned}
$$

Hamiltonian for $\delta=\alpha$

$$
\mathcal{H}_{I}=-\frac{\alpha}{2} u v^{2}-\frac{\beta}{6} u^{3}+\frac{\gamma}{2} u_{x}^{2}+\frac{\phi}{2} v_{x}^{2}
$$

$\mathcal{P T}$-symmetries:
$\mathcal{P} \mathcal{I}_{++}: x \mapsto-x, t \mapsto-t, i \mapsto-i, u \mapsto u, v \mapsto v$
$\mathcal{P} \mathcal{T}_{+-}: x \mapsto-x, t \mapsto-t, i \mapsto-i, u \mapsto u, v \mapsto-v$ $\mathcal{P} \mathcal{T}_{-+}: x \mapsto-x, t \mapsto-t, i \mapsto-i, u \mapsto-u, v \mapsto v$
$\mathcal{P} \mathcal{T}_{--}: x \mapsto-x, t \mapsto-t, i \mapsto-i, u \mapsto-u, v \mapsto-v$
for $\alpha, \beta, \gamma, \phi \in \mathbb{R}$ for $\alpha, \beta, \gamma, \phi \in \mathbb{R}$ for $i \alpha, i \beta, \gamma, \phi \in \mathbb{R}$ for $i \alpha, i \beta, \gamma, \phi \in \mathbb{R}$

Deformed models

Deformed models

$$
\begin{aligned}
\mathcal{H}_{\varepsilon, \mu}^{++} & =-\frac{\alpha}{2} u v^{2}-\frac{\beta}{6} u^{3}-\frac{\gamma}{1+\varepsilon}\left(i u_{x}\right)^{\varepsilon+1}-\frac{\phi}{1+\mu}\left(i v_{x}\right)^{\mu+1} \\
\mathcal{H}_{\varepsilon, \mu}^{+-} & =\frac{\alpha}{1+\mu} u(i v)^{\mu+1}-\frac{\beta}{6} u^{3}-\frac{\gamma}{1+\varepsilon}\left(i u_{x}\right)^{\varepsilon+1}+\frac{\phi}{2} v_{x}^{2} \\
\mathcal{H}_{\varepsilon, \mu}^{-+} & =-\frac{\alpha}{2} u v^{2}-\frac{i \beta}{(1+\varepsilon)(2+\varepsilon)}(i u)^{2+\varepsilon}+\frac{\gamma}{2} u_{x}^{2}-\frac{\phi}{1+\mu}\left(i v_{x}\right)^{\mu+1} \\
\mathcal{H}_{\varepsilon, \mu}^{--} & =\frac{\alpha}{1+\mu} u(i v)^{\mu+1}-\frac{i \beta}{(1+\varepsilon)(2+\varepsilon)}(i u)^{2+\varepsilon}+\frac{\gamma}{2} u_{x}^{2}+\frac{\phi}{2} v_{x}^{2}
\end{aligned}
$$

with equations of motion

$$
\begin{array}{rrr}
u_{t}+\alpha v v_{x}+\beta u u_{x}+\gamma u_{x x x, \varepsilon}=0, & u_{t}+\alpha v_{\mu} v_{x}+\beta u u_{x}+\gamma u_{x x x, \varepsilon}=0, \\
v_{t}+\alpha(u v)_{x}+\phi v_{x x x, \mu}=0, & v_{t}+\alpha\left(u v_{\mu}\right)_{x}+\phi v_{x x x}=0, \\
u_{t}+\alpha v v_{x}+\beta u_{\varepsilon} u_{x}+\gamma u_{x x x}=0, & u_{t}+\alpha v_{\mu} v_{x}+\beta u_{\varepsilon} u_{x}+\gamma u_{x x x}=0, \\
v_{t}+\alpha(u v)_{x}+\phi v_{x x x, \mu}=0, & v_{t}+\alpha\left(u v_{\mu}\right)_{x}+\phi v_{x x x}=0 .
\end{array}
$$

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v)=v(v-A)^{2}(v-B)^{2}$
- eigenvales of the Jacobian:

- energy:

Deformed models

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v)=v(v-A)^{2}(v-B)^{2}$
- eigenvales of the Jacobian:

- energy:

Deformed models

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v)=v(v-A)^{2}(v-B)^{2}$
- eigenvales of the Jacobian:

$$
\begin{aligned}
j_{k}= & \pm \sqrt{r_{A} r_{\lambda}}\left[\cos \left(\frac{3 \theta_{A}}{2}+\frac{\theta_{\lambda}}{2}\right) r_{A}-\cos \left(\frac{\theta_{A}}{2}+\theta_{B}+\frac{\theta_{\lambda}}{2}\right) r_{B}\right] \\
& +i(-1)^{k} \sqrt{r_{A} r_{\lambda}}\left[\sin \left(\frac{3 \theta_{A}}{2}+\frac{\theta_{\lambda}}{2}\right) r_{A}-\sin \left(\frac{\theta_{A}}{2}+\theta_{B}+\frac{\theta_{\lambda}}{2}\right) r_{B}\right]
\end{aligned}
$$

- energy:

Deformed models

Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II $R(v)=v(v-A)^{2}(v-B)^{2}$
- eigenvales of the Jacobian:

$$
\begin{aligned}
j_{k}= & \pm \sqrt{r_{A} r_{\lambda}}\left[\cos \left(\frac{3 \theta_{A}}{2}+\frac{\theta_{\lambda}}{2}\right) r_{A}-\cos \left(\frac{\theta_{A}}{2}+\theta_{B}+\frac{\theta_{\lambda}}{2}\right) r_{B}\right] \\
& +i(-1)^{k} \sqrt{r_{A} r_{\lambda}}\left[\sin \left(\frac{3 \theta_{A}}{2}+\frac{\theta_{\lambda}}{2}\right) r_{A}-\sin \left(\frac{\theta_{A}}{2}+\theta_{B}+\frac{\theta_{\lambda}}{2}\right) r_{B}\right]
\end{aligned}
$$

- energy:

$$
\begin{aligned}
E_{T_{A}} & =\oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{d v}{v_{\zeta}}=\oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda} \sqrt{v}(v-A)(v-B)} d v \\
& =-\pi \frac{\sqrt{-\gamma \kappa_{2}}}{\alpha \sqrt{A}(A-B)}\left[c A^{2}+\kappa_{2} A+\frac{\beta}{3}\left(\frac{c}{\alpha}+\frac{\kappa_{2}}{\alpha A}\right)^{3}\right]
\end{aligned}
$$

Deformed models

Periodic trajectories for type II broken $\mathcal{P} \mathcal{T}$-symmetry

$E_{T_{A}} \approx-0.4275$
(a) v-field
(b) u-field

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, Im(u)
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P} \mathcal{T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u), \operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P} \mathcal{T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, $\operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, Im(u)
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P} \mathcal{T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u), \operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P} \mathcal{T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u), \operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P} \mathcal{T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u), \operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P} \mathcal{T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, $\operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{I}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, $\operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in lto systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, $\operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in lto systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, $\operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in lto systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Conclusions:

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in $\operatorname{Re}(u)$, $\operatorname{Im}(u)$
- energies can be computed effectively in complex models
- possible to have broken $\mathcal{P T}$-symmetry with real energies
- solitons as in real case, broken $\mathcal{P} \mathcal{T}$-symmetry \Rightarrow breather
- deformed models extend over several Riemann sheets
- new features in lto systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

Thank you for your attention

