

# PT-symmetry breaking in complex nonlinear wave equations and their deformations

Andreas Fring

### Quantum Physics with Non-Hermitian Operators Max Planck Institute, Dresden 15-25 June 2011

based on arXiv:1103.1832 (accepted for publ. in J. Phys. A.) Andrea Cavaglia (City University), Bijan Bagchi (Calcutta University)



# PT-symmetry breaking in complex nonlinear wave equations and their deformations

Andreas Fring

### Quantum Physics with Non-Hermitian Operators Max Planck Institute, Dresden 15-25 June 2011

based on arXiv:1103.1832 (accepted for publ. in J. Phys. A.) Andrea Cavaglia (City University), Bijan Bagchi (Calcutta University) Deformations of the KdV equation Ito type system

o type systems Conclusions

#### Integrable models and PT-symmetry



### 8th UK meeting on Integrable Models, Conformal Field Theory and Related Topics

Edinburgh, 16 & 17 April 2004

CINA 7004 70002 EXINA 7004 EXINA 7004 AUX 7004 FXINA 7004

Scientific Programme & Timetable | Meeting Arrangements | Registration Form | Participants List

VIAN YE LEADIN VIAN YE LEADIN VIAN YE LEADIN VIAN YE

The proposed meeting is to be the eighth in a series of annual one-day meetings on this topic. The main aims of the meeting are:

- · The dissemination, explanation and discussion of recent exciting results in this field.
- To promote communication and collaboration within the UK Integrable Models and Conformal Field Theory community, and to bring mathematicians and physicists working in this area together.
- To act as a forum for young researchers to present their work and to become known and integrated into the community.

Speakers:

Carl Bender (Washington) Richard Blythe (Manchester) Alexandre Caldeira (Oxford) Vladimir Dobrev (Newcastle) Andreas Fring (City) Yiannis Papadimitriou (Amsterdam)

- Calogero-Moser-Sutherland models
  - A. Fring, Mod. Phys. Lett. A21 (2006) 691
  - A. Fring, Acta Polytechnica 47 (2007) 44
  - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
  - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
  - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
  - A. Fring, Pramana J. of Physics 73 (2009) 363
  - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
  - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
  - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
  - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
  - A. Fring, J. Phys. A40 (2007) 4215
  - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
  - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

- Calogero-Moser-Sutherland models
  - A. Fring, Mod. Phys. Lett. A21 (2006) 691
  - A. Fring, Acta Polytechnica 47 (2007) 44
  - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
  - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
  - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
  - A. Fring, Pramana J. of Physics 73 (2009) 363
  - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
  - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
  - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
  - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
  - A. Fring, J. Phys. A40 (2007) 4215
  - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
  - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

- Calogero-Moser-Sutherland models
  - A. Fring, Mod. Phys. Lett. A21 (2006) 691
  - A. Fring, Acta Polytechnica 47 (2007) 44
  - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
  - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
  - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
  - A. Fring, Pramana J. of Physics 73 (2009) 363
  - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
  - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
  - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
  - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
  - A. Fring, J. Phys. A40 (2007) 4215
  - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
  - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

- Calogero-Moser-Sutherland models
  - A. Fring, Mod. Phys. Lett. A21 (2006) 691
  - A. Fring, Acta Polytechnica 47 (2007) 44
  - A. Fring, M. Znojil, J. Phys. A41 (2008) 194010
  - P. Assis, A. Fring, J. Phys. A42 (2009) 425206
  - P. Assis, A. Fring, J. Phys. A42 (2009) 105206
  - A. Fring, Pramana J. of Physics 73 (2009) 363
  - A. Fring, M. Smith, J. Phys. A43 (2010) 325201
  - A. Fring, M. Smith, Int. J. of Theor. Phys. 50 (2011) 974
  - talk by M.Smith Thursday 23/06 11:45
- Quantum spin chains
  - O. Castro-Alvaredo, A. Fring, J. Phys. A42 (2009) 465211
- Nonlinear-wave equations (KdV)
  - A. Fring, J. Phys. A40 (2007) 4215
  - B. Bagchi, A. Fring, J. Phys. A41 (2008) 392004
  - P. Assis, A. Fring, Pramana J. of Physics 74 (2010) 857

to type systems Conclusions

#### Dynamical systems in three different settings

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

• *PT*-symmetry

 $[\mathcal{PT}, H] = 0$  and  $\mathcal{PT}\Phi = \Phi$ 

• spontaneously broken  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] = 0$  and  $\mathcal{PT}\Phi \neq \Phi$ 

• broken  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] \neq 0$  and  $\mathcal{PT}\Phi \neq \Phi$ 

to type systems Conclusions

#### Dynamical systems in three different settings

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

•  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] = 0$  and  $\mathcal{PT}\Phi = \Phi$ 

• spontaneously broken  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] = 0$  and  $\mathcal{PT}\Phi \neq \Phi$ 

• broken  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] \neq 0$  and  $\mathcal{PT}\Phi \neq \Phi$ 

o type systems Conclusions

#### Dynamical systems in three different settings

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

•  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] = 0$  and  $\mathcal{PT}\Phi = \Phi$ 

• spontaneously broken  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT},H]=0 \qquad \text{and} \qquad \mathcal{PT}\Phi\neq \Phi$ 

• broken  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] \neq 0$  and  $\mathcal{PT}\Phi \neq \Phi$ 

to type systems Conclusions

#### Dynamical systems in three different settings

What is the behaviour of standard quantities in dynamical systems when they are complexified? Three different scenarios:

•  $\mathcal{PT}$ -symmetry

 $[\mathcal{PT}, H] = 0$  and  $\mathcal{PT}\Phi = \Phi$ 

• spontaneously broken  $\mathcal{PT}$ -symmetry

$$[\mathcal{PT}, H] = 0$$
 and  $\mathcal{PT}\Phi \neq \Phi$ 

• broken  $\mathcal{PT}$ -symmetry

$$[\mathcal{PT}, H] \neq 0$$
 and  $\mathcal{PT}\Phi \neq \Phi$ 

Dynamical systems in three different settings

### **Quantities of interest:**

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] \, dx = \oint_{\Gamma} \mathcal{H}[u(x)] \, \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Dynamical systems in three different settings

### **Quantities of interest:**

energy

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] \, dx = \oint_{\Gamma} \mathcal{H}[u(x)] \, \frac{du}{u_x}$$

### fixed points

- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

to type systems Conclusions

Dynamical systems in three different settings

### **Quantities of interest:**

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] \, dx = \oint_{\Gamma} \mathcal{H}[u(x)] \, \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

to type systems Conclusions

Dynamical systems in three different settings

### **Quantities of interest:**

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] \, dx = \oint_{\Gamma} \mathcal{H}[u(x)] \, \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

to type systems Conclusions

Dynamical systems in three different settings

### **Quantities of interest:**

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] \, dx = \oint_{\Gamma} \mathcal{H}[u(x)] \, \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

Dynamical systems in three different settings

### **Quantities of interest:**

$$E = \int_{-a}^{a} \mathcal{H}[u(x)] \, dx = \oint_{\Gamma} \mathcal{H}[u(x)] \, \frac{du}{u_x}$$

- fixed points
- asymptotic behaviour
- k-limit cycles
- bifurcations
- chaos

#### Complex KdV equation

### The KdV system:

Hamiltonian:

$$\mathcal{H}_{\mathsf{KdV}} = -\frac{\beta}{6}u^3 + \frac{\gamma}{2}u_x^2 \qquad \qquad \beta, \gamma \in \mathbb{C}$$

equation of motion:

$$u_t + \beta u u_x + \gamma u_{xxx} = 0$$

Antilinear symmetries:

$$\begin{array}{rcl} \mathcal{PT}_+ & : & x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u & \text{ for } \beta, \gamma \in \mathbb{R} \\ \mathcal{PT}_- & : & x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u & \text{ for } i\beta, \gamma \in \mathbb{R} \end{array}$$

#### Complex KdV equation

### The KdV system:

Hamiltonian:

$$\mathcal{H}_{\mathsf{KdV}} = -\frac{\beta}{6}u^3 + \frac{\gamma}{2}u_x^2 \qquad \qquad \beta, \gamma \in \mathbb{C}$$

equation of motion:

$$u_t + \beta u u_x + \gamma u_{xxx} = 0$$

Antilinear symmetries:

$$\begin{array}{lll} \mathcal{PT}_+ & : & x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u & \text{ for } \beta, \gamma \in \mathbb{R} \\ \mathcal{PT}_- & : & x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u & \text{ for } i\beta, \gamma \in \mathbb{R} \end{array}$$

 $\mathcal{PT}\text{-symmetric},$  spontaneously broken and broken solutions

- Integrating twice:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \frac{\beta}{6} u^{3} \right) =: \lambda P(u)$$

with integration constants  $\kappa_1, \kappa_2 \in \mathbb{C}$ 

- traveling wave:  $u(x,t) = u(\zeta)$  with  $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right]$$
$$u_{\zeta}^{l} = \pm \operatorname{Im}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right]$$

$$u_{\zeta}^{R} = 0$$
$$u_{\zeta}^{I} = 0$$

 $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions

- Integrating twice:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \frac{\beta}{6} u^{3} \right) =: \lambda P(u)$$

with integration constants  $\kappa_1, \kappa_2 \in \mathbb{C}$ 

- traveling wave:  $u(x, t) = u(\zeta)$  with  $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right]$$
$$u_{\zeta}^{l} = \pm \operatorname{Im}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right]$$

$$u_{\zeta}^{R} = 0$$
$$u_{\zeta}^{I} = 0$$

 $\mathcal{PT}\text{-symmetric},$  spontaneously broken and broken solutions

- Integrating twice:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \frac{\beta}{6} u^{3} \right) =: \lambda P(u)$$

with integration constants  $\kappa_1, \kappa_2 \in \mathbb{C}$ 

- traveling wave:  $u(x, t) = u(\zeta)$  with  $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$u_{\zeta}^{R} = \pm \operatorname{Re}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right]$$
$$u_{\zeta}^{l} = \pm \operatorname{Im}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right]$$

$$u_{\zeta}^{R} = 0$$
$$u_{\zeta}^{I} = 0$$

 $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions

- Integrating twice:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \frac{\beta}{6} u^{3} \right) =: \lambda P(u)$$

with integration constants  $\kappa_1, \kappa_2 \in \mathbb{C}$ 

- traveling wave:  $u(x, t) = u(\zeta)$  with  $\zeta = x ct$
- view this as a 2 dimensional dynamical systems:

$$\begin{aligned} u_{\zeta}^{R} &= \pm \operatorname{Re}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right] \\ u_{\zeta}^{l} &= \pm \operatorname{Im}\left[\sqrt{\lambda}\sqrt{P(u^{R}+iu^{l})}\right] \end{aligned}$$

$$\begin{array}{rcl} u^R_\zeta &=& 0\\ u^I_\zeta &=& 0 \end{array}$$

to type systems Conclusions

 $\mathcal{PT}\text{-symmetric},$  spontaneously broken and broken solutions

Linearisation at the fixed point  $u_f$ :

$$\begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{l} \end{pmatrix} = J(u^{R}, u^{l})\Big|_{u=u_{f}} \begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{l} \end{pmatrix}$$

with Jacobian matrix

$$J(u^{R}, u^{l})\Big|_{u=u_{f}} = \left(\begin{array}{cc} \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{l}} \\ \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{l}} \end{array}\right)\Big|_{u=u_{f}}$$

**Linearisation theorem:** Consider a nonlinear system which possesses a simple linearisation at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of the linear system and its linearisation are qualitatively equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part, i.e. the linearized system is not a centre.

to type systems Conclusions

 $\mathcal{PT}\text{-symmetric},$  spontaneously broken and broken solutions

Linearisation at the fixed point  $u_f$ :

$$\begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{l} \end{pmatrix} = J(u^{R}, u^{l})\Big|_{u=u_{f}} \begin{pmatrix} u_{\zeta}^{R} \\ u_{\zeta}^{l} \end{pmatrix}$$

with Jacobian matrix

$$J(u^{R}, u^{l})\Big|_{u=u_{f}} = \left(\begin{array}{c} \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Re}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{l}} \\ \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{R}} & \pm \frac{\partial \operatorname{Im}[\sqrt{\lambda}\sqrt{P(u)}]}{\partial u^{l}}\end{array}\right)\Big|_{u=u_{f}}$$

**Linearisation theorem:** Consider a nonlinear system which possesses a simple linearisation at some fixed point. Then in a neighbourhood of the fixed point the phase portraits of the linear system and its linearisation are qualitatively equivalent, if the eigenvalues of the Jacobian matrix have a nonzero real part, i.e. the linearized system is not a centre.  $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions

### The ten similarity classes for J

| $j_i \in \mathbb{R}$        | $j_1 > j_2 > 0$             | unstable node          |
|-----------------------------|-----------------------------|------------------------|
|                             | $j_2 < j_1 < 0$             | stable node            |
|                             | $j_2 < 0 < j_1$             | saddle point           |
| $j_1 = j_2$ , diagonal J    | $j_i > 0$                   | unstable star node     |
|                             | <i>j<sub>i</sub></i> < 0    | stable star node       |
| $j_1 = j_2$ , nondiagonal J | $j_i > 0$                   | unstable improper node |
|                             | <i>j<sub>i</sub></i> < 0    | stable improper node   |
| $j_i \in \mathbb{C}$        | $\operatorname{Re} j_i > 0$ | unstable focus         |
|                             | $\operatorname{Re} j_i = 0$ | centre                 |
|                             | $\operatorname{Re} j_i < 0$ | stable focus           |

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (rational)

Further integration:

$$\pm\sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int du\frac{1}{\sqrt{P(u)}}$$

assume:  $P(u) = (u - A)^3$ , which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = -\frac{c^2}{2\beta}, \quad \kappa_2 = \frac{c^3}{6\beta^2} \quad \text{and} \quad A = \frac{c}{\beta}$$

then:

$$u(\zeta) = \frac{c}{\beta} - \frac{12\gamma}{\beta(\zeta - \zeta_0)^2}$$

$$E_{a} = -\frac{ac^{2}}{3\beta^{2}}\left(c + \frac{36\gamma}{a^{2} - \zeta_{0}^{2}}\right) + \frac{72\gamma^{2}}{15\beta^{2}}\left[\frac{10c\left(a^{3} + 3a\zeta_{0}^{2}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{3}} - \frac{48\gamma\left(a^{5} + 10a^{3}\zeta_{0}^{2} + 5a\zeta_{0}^{4}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{5}}\right]$$

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (rational)

Further integration:

$$\pm\sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int du\frac{1}{\sqrt{P(u)}}$$

assume:  $P(u) = (u - A)^3$ , which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = -\frac{c^2}{2\beta}, \quad \kappa_2 = \frac{c^3}{6\beta^2} \quad \text{and} \quad A = \frac{c}{\beta}$$

then:

$$u(\zeta) = \frac{c}{\beta} - \frac{12\gamma}{\beta(\zeta - \zeta_0)^2}$$

$$E_{a} = -\frac{ac^{2}}{3\beta^{2}}\left(c + \frac{36\gamma}{a^{2} - \zeta_{0}^{2}}\right) + \frac{72\gamma^{2}}{15\beta^{2}}\left[\frac{10c\left(a^{3} + 3a\zeta_{0}^{2}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{3}} - \frac{48\gamma\left(a^{5} + 10a^{3}\zeta_{0}^{2} + 5a\zeta_{0}^{4}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{5}}\right]$$

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (rational)

Further integration:

$$\pm\sqrt{\lambda}\left(\zeta-\zeta_{0}\right)=\int du\frac{1}{\sqrt{P(u)}}$$

assume:  $P(u) = (u - A)^3$ , which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = -\frac{c^2}{2\beta}, \quad \kappa_2 = \frac{c^3}{6\beta^2} \quad \text{and} \quad A = \frac{c}{\beta}$$

then:

$$u(\zeta) = \frac{c}{\beta} - \frac{12\gamma}{\beta(\zeta - \zeta_0)^2}$$

$$E_{a} = -\frac{ac^{2}}{3\beta^{2}}\left(c + \frac{36\gamma}{a^{2} - \zeta_{0}^{2}}\right) + \frac{72\gamma^{2}}{15\beta^{2}}\left[\frac{10c\left(a^{3} + 3a\zeta_{0}^{2}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{3}} - \frac{48\gamma\left(a^{5} + 10a^{3}\zeta_{0}^{2} + 5a\zeta_{0}^{4}\right)}{\left(a^{2} - \zeta_{0}^{2}\right)^{5}}\right]$$

to type systems Conclusions

 $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions (rational)



(a)  $\mathcal{PT}$ -symmetric: c = 1,  $\beta = 2$ ,  $\gamma = 3$ , A = 1/2(b) broken  $\mathcal{PT}$ -symmetry: c = 1,  $\beta = 2 + i2$ ,  $\gamma = 3$ ,  $A = \frac{1-i}{4}$ 

The energy is real for (a) and complex for (b).

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

assume: 
$$P(u) = (u - A)^2(u - B)$$
, which is possible for  
 $\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{A}{2}(\beta A - 2c), \quad \kappa_2 = \frac{A^2}{6}(3c - 2\beta A), \quad B = \frac{3c}{\beta} - 2A$ 

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2}\sqrt{A - B}\sqrt{\lambda}\left(\zeta - \zeta_0\right)\right]$$

linearisation:  $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$ 

 $J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$ 

with eigenvalues ( $\in I\mathbb{R}$  for A < B,  $\lambda > 0$  or A > B,  $\lambda < 0$ )

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$
$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

assume: 
$$P(u) = (u - A)^2(u - B)$$
, which is possible for

$$\lambda = -rac{eta}{3\gamma}, \quad \kappa_1 = rac{A}{2}(eta A - 2c), \quad \kappa_2 = rac{A^2}{6}(3c - 2eta A), \quad B = rac{3c}{eta} - 2A$$

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2}\sqrt{A - B}\sqrt{\lambda} \left(\zeta - \zeta_0\right)\right]$$

linearisation:  $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$ 

 $J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$ 

with eigenvalues ( $\in I\mathbb{R}$  for A < B,  $\lambda > 0$  or A > B,  $\lambda < 0$ )

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$
$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

assume: 
$$P(u) = (u - A)^2(u - B)$$
, which is possible for

$$\lambda = -rac{eta}{3\gamma}, \quad \kappa_1 = rac{A}{2}(eta A - 2c), \quad \kappa_2 = rac{A^2}{6}(3c - 2eta A), \quad B = rac{3c}{eta} - 2A$$

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2}\sqrt{A - B}\sqrt{\lambda}(\zeta - \zeta_0)\right]$$

linearisation:  $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$ 

$$J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$$

with eigenvalues ( $\in i\mathbb{R}$  for A < B,  $\lambda > 0$  or A > B,  $\lambda < 0$ )

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$
$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

assume: 
$$P(u) = (u - A)^2(u - B)$$
, which is possible for

$$\lambda = -rac{eta}{3\gamma}, \quad \kappa_1 = rac{A}{2}(eta A - 2c), \quad \kappa_2 = rac{A^2}{6}(3c - 2eta A), \quad B = rac{3c}{eta} - 2A$$

then (with one free parameter):

$$u(\zeta) = B + (A - B) \tanh^2 \left[\frac{1}{2}\sqrt{A - B}\sqrt{\lambda}(\zeta - \zeta_0)\right]$$

linearisation:  $(A - B = r_{AB}e^{i\theta_{AB}}, \lambda = r_{\lambda}e^{i\theta_{\lambda}})$ 

$$J(A) = \begin{pmatrix} \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \mp \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \\ \pm \sqrt{r_{AB}r_{\lambda}} \sin\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] & \pm \sqrt{r_{AB}r_{\lambda}} \cos\left[\frac{1}{2}(\theta_{AB} + \theta_{\lambda})\right] \end{pmatrix}$$

with eigenvalues ( $\in i\mathbb{R}$  for A < B,  $\lambda > 0$  or A > B,  $\lambda < 0$ )

$$j_{1} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$
$$j_{2} = \pm \sqrt{r_{AB}r_{\lambda}} \exp\left[-\frac{i}{2}(\theta_{AB} + \theta_{\lambda})\right]$$

 $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions (trigonometric)

### Energy for the periodic motion for one period:

$$E_{T} = \oint_{\Gamma} \mathcal{H}[u(\zeta)] \frac{du}{u_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[u]}{\sqrt{\lambda}\sqrt{u-B}(u-A)} du = -\pi\sqrt{\frac{\beta\gamma}{3}} \frac{A^{3}}{\sqrt{A-B}}$$

In general:

- $E_T \in \mathbb{R}$  for  $\mathcal{PT}$ -symmetric solution
- $E_T \in \mathbb{C}$  for spontaneously broken  $\mathcal{PT}$ -symmetric solution
- $E_T \in \mathbb{C}$  for broken  $\mathcal{PT}$ -symmetric solution

But:

$$E_{\mathcal{T}} \in \mathbb{R} \quad ext{for } A = rac{\sin heta_{\gamma}}{|eta| \sin ( heta_{\gamma} - 2 heta_{eta}/3)} \exp \left(-irac{ heta_{eta}}{3}
ight).$$

 $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions (trigonometric)

Energy for the periodic motion for one period:

$$E_{T} = \oint_{\Gamma} \mathcal{H}[u(\zeta)] \frac{du}{u_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[u]}{\sqrt{\lambda}\sqrt{u-B}(u-A)} du = -\pi\sqrt{\frac{\beta\gamma}{3}} \frac{A^{3}}{\sqrt{A-B}}$$

In general:

- $E_T \in \mathbb{R}$  for  $\mathcal{PT}$ -symmetric solution
- $E_T \in \mathbb{C}$  for spontaneously broken  $\mathcal{PT}$ -symmetric solution
- $E_T \in \mathbb{C}$  for broken  $\mathcal{PT}$ -symmetric solution

But:

$$E_{\mathcal{T}} \in \mathbb{R} \quad \text{for } A = rac{\sin heta_{\gamma}}{|eta| \sin ( heta_{\gamma} - 2 heta_{eta}/3)} \exp \left(-irac{ heta_{eta}}{3}
ight).$$
$\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions (trigonometric)

Energy for the periodic motion for one period:

$$E_{T} = \oint_{\Gamma} \mathcal{H}[u(\zeta)] \frac{du}{u_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[u]}{\sqrt{\lambda}\sqrt{u-B}(u-A)} du = -\pi\sqrt{\frac{\beta\gamma}{3}} \frac{A^{3}}{\sqrt{A-B}}$$

In general:

- $E_T \in \mathbb{R}$  for  $\mathcal{PT}$ -symmetric solution
- $E_T \in \mathbb{C}$  for spontaneously broken  $\mathcal{PT}$ -symmetric solution
- $E_T \in \mathbb{C}$  for broken  $\mathcal{PT}$ -symmetric solution

But:

$$E_{\mathcal{T}} \in \mathbb{R} \quad \text{for } A = rac{\sin heta_{\gamma}}{|eta| \sin ( heta_{\gamma} - 2 heta_{eta}/3)} \exp \left(-irac{ heta_{eta}}{3}
ight).$$

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

### $\mathcal{PT}$ -symmetric solution:



(a) periodic: c = 1,  $\beta = 3/10$ ,  $\gamma = 3$ , A = 4, B = 2,  $T = 2\sqrt{15}\pi$ (b) asympt. constant: c = 1,  $\beta = 3/10$ ,  $\gamma = -3$ , A = 4, B = 2 $E_T \in \mathbb{R}$ 

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

### $\mathcal{PT}$ -symmetric solution:



(a) periodic: c = 1,  $\beta = 3/10$ ,  $\gamma = 3$ , A = 4, B = 2,  $T = 2\sqrt{15}\pi$ (b) asympt. constant: c = 1,  $\beta = 3/10$ ,  $\gamma = -3$ , A = 4, B = 2 $E_T \in \mathbb{R}$ 

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

#### spontaneously broken $\mathcal{PT}$ -symmetric solution:



(a) periodic: c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = 3$ ,  $A = 4 + \frac{i}{2}$  and B = 2 - i for Im  $\zeta_0 = 0.5$  black, Im  $\zeta_0 = 0.3$  green Im  $\zeta_0 = 0.1$  blue (b) asympt. constant: c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = -3$  for  $A = 4 - \frac{i}{2}$ , B = 2 + i Im  $\zeta_0 = -0.5$  black;  $A = A^*$ ,  $B = B^*$ , Im  $\zeta_0 = 0.5$  blue  $E_T \in \mathbb{C}$ 

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (trigonometric)

#### spontaneously broken $\mathcal{PT}$ -symmetric solution:



(a) periodic: c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = 3$ ,  $A = 4 + \frac{i}{2}$  and B = 2 - i for Im  $\zeta_0 = 0.5$  black, Im  $\zeta_0 = 0.3$  green Im  $\zeta_0 = 0.1$  blue (b) asympt. constant: c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = -3$  for  $A = 4 - \frac{i}{2}$ , B = 2 + i Im  $\zeta_0 = -0.5$  black;  $A = A^*$ ,  $B = B^*$ , Im  $\zeta_0 = 0.5$  blue  $E_T \in \mathbb{C}$  PT-symmetric, spontaneously broken and broken solutions (trigonometric)

## broken $\mathcal{PT}$ -symmetric solution:



(a) periodic: A = 4, B = 2, c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = 3 + \frac{i}{2}$ ,  $\text{Im } \zeta_0 = 6$ (b) asympt. constant: A = 4, B = 2, c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = -3 + \frac{i}{2}$ ,  $\text{Im } \zeta_0 = 1/2$  $F_T \in \mathbb{C}$  PT-symmetric, spontaneously broken and broken solutions (trigonometric)

### broken $\mathcal{PT}$ -symmetric solution:



(a) periodic: A = 4, B = 2, c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = 3 + \frac{i}{2}$ , Im  $\zeta_0 = 6$ (b) asympt. constant: A = 4, B = 2, c = 1,  $\beta = \frac{3}{10}$ ,  $\gamma = -3 + \frac{i}{2}$ , Im  $\zeta_0 = 1/2$  $E_T \in \mathbb{C}$  *PT*-symmetric, spontaneously broken and broken solutions (trigonometric)

### broken $\mathcal{PT}$ -symmetric solution:



(a) periodic solution with complex energy  $E_T = -10.52 + i1.67$ (b) periodic solution with real energy  $E_T = -4\pi$ 

PT-symmetric, spontaneously broken and broken solutions (elliptic)

assume: P(u) = (u - A)(u - B)(u - C), which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{1}{6} \left[ \beta (A^2 + AC + C^2) - 3c(A - C) \right]$$
  
$$\kappa_2 = \frac{AC}{6} [3c - \beta (A + C)] \quad \text{and} \quad B = \frac{3c}{\beta} - (A + C)$$

then (with two free parameter):

$$u(\zeta) = A + (B - A) \operatorname{ns}^{2} \left[ \frac{1}{2} \sqrt{B - A} \sqrt{\lambda} \left( \zeta - \zeta_{0} \right) \left| \frac{A - C}{A - B} \right] \right]$$

PT-symmetric, spontaneously broken and broken solutions (elliptic)

assume: P(u) = (u - A)(u - B)(u - C), which is possible for

$$\lambda = -\frac{\beta}{3\gamma}, \quad \kappa_1 = \frac{1}{6} \left[ \beta (A^2 + AC + C^2) - 3c(A - C) \right]$$
  
$$\kappa_2 = \frac{AC}{6} [3c - \beta (A + C)] \quad \text{and} \quad B = \frac{3c}{\beta} - (A + C)$$

then (with two free parameter):

$$u(\zeta) = A + (B - A) \operatorname{ns}^{2} \left[ \frac{1}{2} \sqrt{B - A} \sqrt{\lambda} \left( \zeta - \zeta_{0} \right) \left| \frac{A - C}{A - B} \right] \right]$$

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (elliptic)

### $\mathcal{PT}$ -symmetric solution:



 $A = 1, B = 3, C = 6, c = 1, \beta = 3/10, \gamma = -3$ 

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (elliptic)

#### spontaneously broken $\mathcal{PT}$ -symmetric solution:



(a)  $-64 \leq \zeta \leq$  18 solid (red) and 18  $<\zeta \leq$  200 dashed (black) (b)  $-200 < \zeta <$  1400

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (elliptic)

### broken $\mathcal{PT}$ -symmetric solution:



(a) A = 1, B = 3, C = 6, c = 1,  $\beta = 3/10$  and  $\gamma = 3 + 2i$  for -200  $\leq \zeta \leq 200$ ; (b) A = 1, B = 2 + 3i, C = 6, c = 1,  $\beta = 3/10 - i/10$  and  $\gamma = 3$ for  $-200 \leq \zeta \leq 200$  Relation to quantum mechanical Hamiltonians

# **Reduction to quantum mechanical Hamiltonians:** For instance:

$$u \rightarrow x$$
,  $\zeta \rightarrow t$ ,  $\kappa_1 = 0$ ,  $\kappa_2 = \gamma E$ ,  $\beta = 6cg$ ,  $\gamma = -c$ 

converts

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1}u + \frac{c}{2}u^{2} - \frac{\beta}{6}u^{3} \right)$$

into Newton's equations for

$$H = E = \frac{1}{2}p^2 + \frac{1}{2}x^2 - gx^3$$

treated in

[C. Bender, D. Brody, D. Hook, Phys. A41 (2008) 352003]

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (solitons)

# Soliton solutions:

Hirota's bilinear method ( $u(x, t) = \frac{12\gamma}{\beta}(\ln \tau)_{xx}$ )

$$\frac{6\gamma}{\beta}\left(\gamma D_{x}^{4}+D_{x}D_{t}\right)\tau\cdot\tau=0$$

one soliton solution:

$$u(x,t) = \frac{3\gamma p_1^2}{\beta \cosh^2 \left[\frac{1}{2}(p_1 x - \gamma p_1^3 t + \phi_1)\right]}$$

two soliton solution:

$$u(x,t) = \frac{24\gamma \sum_{k=0}^{6} c_{k}(-1)^{k} p_{k}^{k} p_{1}^{6-k}}{\beta \left(p_{1}+p_{2}\right)^{4} \left[2\cosh\left(\frac{1}{2}\left(\eta_{1}-\eta_{2}\right)\right) + e^{-\frac{\eta_{1}}{2} - \frac{\eta_{2}}{2}} \left(\frac{e^{\eta_{1}+\eta_{2}}(p_{1}-p_{2})^{4}}{(p_{1}+p_{2})^{4}} + 1\right)\right]^{2}}$$

where we abbreviated  $\eta_i = p_i x - \gamma p_i^3 t + \phi_i$  for i = 1, 2 with

 $c_0 = 1 + \cosh \eta_2, \quad c_1 = 4 \sinh \eta_2, \quad c_2 = \cosh \eta_1 + 6 \cosh \eta_2 - 1, \quad c_3 = 4 \left( \sinh \eta_1 + \sinh \eta_2 \right)$ 

and  $c_i(\eta_1, \eta_2) = c_{6-i}(\eta_2, \eta_1)$ 

PT-symmetric, spontaneously broken and broken solutions (solitons)





(a)  $\mathcal{PT}$ -symmetric solution with  $\beta = 6$ ,  $\gamma = 1$ ,  $p_1 = 1.2$  for  $\phi = i0.3$  blue,  $\phi = i0.8$  red,  $\phi = i1.1$  black, t = -2(b) Broken  $\mathcal{PT}$ -symmetric solution  $\beta = 6$ ,  $\gamma = 1 + i0.4$ ,  $p_1 = 1.2$  for  $\phi = i0.3$  blue,  $\phi = i0.8$  red,  $\phi = i1.1$  black t = -2 Introduction Complex KdV equations

Deformations of the KdV equation

Ito type systems Conclusions

 $\mathcal{PT}$ -symmetric, spontaneously broken and broken solutions (solitons)

# $\mathcal{PT}\text{-symmetric complex one-soliton solution}$

$$\beta = 6, \gamma = 1, p_1 = 1.2, \phi = i0.3,$$

Introduction Complex KdV equations

Deformations of the KdV equation

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (solitons)

# Complex one-soliton solution with broken $\mathcal{PT}$ -symmetry



 $\mathcal{PT}\text{-symmetric, spontaneously broken and broken solutions (solitons)}$ 

## We obtain a breather regaining its shape when:

$$u(x + \Delta_x, t) = u(x, t + \Delta_t)$$

#### with

$$\Delta_{t} = \frac{2\pi p_{r}}{(p_{i}^{4} - p_{r}^{4}) \gamma_{i} - 2p_{i}p_{r} (p_{i}^{2} + p_{r}^{2}) \gamma_{r}}$$
  
$$\Delta_{x} = 2\pi \frac{p_{i} (3p_{r}^{2} - p_{i}^{2}) \gamma_{i} + 2\pi p_{r} (3p_{i}^{2} - p_{r}^{2}) \gamma_{r}}{(p_{i}^{4} - p_{r}^{4}) \gamma_{i} - 2p_{i}p_{r} (p_{i}^{2} + p_{r}^{2}) \gamma_{r}}$$

speed of the soliton:

$$\mathbf{v} = -\frac{\Delta_x}{\Delta_t} = \left(3p_i^2 - p_r^2\right)\gamma_r - \frac{p_i\left(p_i^2 - 3p_r^2\right)\gamma_i}{p_r}$$

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (solitons)





 $\beta = 6$ ,  $\gamma = 1 + i/2$ ,  $p_1 = 2$ ,  $\phi = i0.8$  and  $\Delta_t = -\pi/2$  for different times  $t = -\pi/2$  solid (blue), t = -1 dashed (red), t = 0 dasheddot (orange), t = 0.7 dotted (green), and  $t = \pi/2$  dasheddotdot (black) (a) real part; (b) imaginary part

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (solitons)





 $\beta = 6, \gamma = 1, p_1 = 1.2, p_2 = 2.2, \phi_1 = i0.1$  and  $\phi_2 = i0.2$ . (a) t = -2 solid (blue), t = -0.2 dashed (red), t = 0.2 dotted (black); (b) t = 0.3 dotted (black), t = 0.8 dashed (red), t = 2.0 solid (blue)

Ito type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (solitons)





 $\beta = 6, \gamma = 1 + i\pi/8, p_1 = 2(2/3)^{1/3}, p_2 = 2, \phi_1 = i0.1$  and  $\phi_2 = i0.2$ . (a) t = -4 solid (blue), t = -3.5 dashed (red), t = -2. dotted (black); (b) t = 0.7 solid (blue), t = 2 dashed (red), t = 8 dotted (black)  $\Delta_t^1 = -3, \Delta_t^2 = -2$ ,

PT-symmetric, spontaneously broken and broken solutions (solitons)

# $\mathcal{PT}\text{-symmetric complex two-soliton solution}$

Real part for:  $\beta = 6$ ,  $\gamma = 1$ ,  $p_1 = 1.2$ ,  $p_2 = 2.2$ ,  $\phi_1 = i0.1$ ,  $\phi_2 = i0.2$ 

to type systems Conclusions

PT-symmetric, spontaneously broken and broken solutions (solitons)

# Complex two-soliton solution with broken $\mathcal{PT}\text{-symmetry}$

Real part for:  $\beta = 6$ ,  $\gamma = 1 + i\pi/8$ ,  $p_1 = 2(2/3)^{1/3}$ ,  $p_2 = 2$ ,  $\phi_1 = i0.1$  and  $\phi_2 = i0.2$ 

to type systems Conclusions

 $\mathcal{PT}\text{-symmetric, spontaneously broken and broken solutions (solitons)}$ 

# Energy for the one-soliton:

$$E_{1s} = -\frac{36\gamma^3 \rho_1^5}{5\beta^2}$$

Energy for the two-soliton:

•  $\mathcal{PT}$ -symmetric case:

$$E_{2s} pprox -10.8049 = E_{1s}(p_1) + E_{1s}(p_2)$$

• Broken  $\mathcal{PT}$ -symmetric case:

$$E_{2s} \approx -7.8876 - i9.4327 = E_{1s}(p_1) + E_{1s}(p_2)$$

Ito type systems Conclusions

# General deformation prescription:

 $\mathcal{PT}$ -anti-symmetric quantities:

$$\mathcal{PT}: \phi(\mathbf{x},t) \mapsto -\phi(\mathbf{x},t) \quad \Rightarrow \quad \delta_{\varepsilon}: \phi(\mathbf{x},t) \mapsto -i[i\phi(\mathbf{x},t)]^{\varepsilon}$$

Two possibilities for the KdV Hamiltonian

$$\delta_{\varepsilon}^+: u_{\mathbf{x}} \mapsto u_{\mathbf{x},\varepsilon} := -i(iu_{\mathbf{x}})^{\varepsilon} \quad \text{or} \quad \delta_{\varepsilon}^-: u \mapsto u_{\varepsilon} := -i(iu)^{\varepsilon},$$

such that

$$\mathcal{H}_{\varepsilon}^{+} = -\frac{\beta}{6}u^{3} - \frac{\gamma}{1+\varepsilon}(iu_{x})^{\varepsilon+1} \qquad \mathcal{H}_{\varepsilon}^{-} = \frac{\beta}{(1+\varepsilon)(2+\varepsilon)}(iu)^{\varepsilon+2} + \frac{\gamma}{2}u_{x}^{2}$$

with equations of motion

$$u_t + \beta u u_x + \gamma u_{xxx,\varepsilon} = 0 \qquad u_t + i \beta u_{\varepsilon} u_x + \gamma u_{xxx} = 0$$

The  $\mathcal{H}_{s}^{+}$ -models

# The $\mathcal{H}^+_{\varepsilon}$ -models Integrating twice yields now:

$$u_{\zeta}^{(n)} = \exp\left[\frac{i\pi}{2(\varepsilon+1)}(1-\varepsilon+4n)\right] [\lambda_{\varepsilon} P(u)]^{\frac{1}{1+\varepsilon}}$$

Again we can construct systematically solutions by assuming:

$$P(u) = (u - A)^{3},$$
  

$$P(u) = (u - A)^{2}(u - B),$$
  

$$P(u) = (u - A)(u - B)(u - C)$$

but now we have branch cuts.

For instance:

## The $\mathcal{H}^+_{\varepsilon}$ -models

The  $\mathcal{H}_{s}^{+}$ -models

Integrating twice yields now:

$$u_{\zeta}^{(n)} = \exp\left[rac{i\pi}{2(arepsilon+1)}(1-arepsilon+4n)
ight] [\lambda_{arepsilon} P(u)]^{rac{1}{1+arepsilon}}$$

Again we can construct systematically solutions by assuming:

$$egin{aligned} P(u) &= (u-A)^3, \ P(u) &= (u-A)^2(u-B), \ P(u) &= (u-A)(u-B)(u-C) \end{aligned}$$

but now we have branch cuts.

For instance:

Ito type systems Conclusions

#### The $\mathcal{H}^+_{\varepsilon}$ -models

# Broken $\mathcal{PT}$ -symmetric rational solutions for $\mathcal{H}^+_{1/3}$



Different Riemann sheets for A = (1 - i)/4, c = 1,  $\beta = 2 + 2i$ and  $\gamma = 3$ (a)  $u^{(1)}$ (b)  $u^{(2)}$ 

Ito type systems Conclusions

#### The $\mathcal{H}_{\varepsilon}^+$ -models

# $\mathcal{PT}$ -symmetric trigonometric/hyperbolic solutions



A = 4, B = 2, c = 1,  $\beta$  = 2 and  $\gamma$  = 3 (a)  $\mathcal{H}^+_{-1/2}$ (b)  $\mathcal{H}^+_{-2/3}$ 

Ito type systems Conclusions

#### The $\mathcal{H}_{\varepsilon}^+$ -models

# Broken $\mathcal{PT}$ -symmetric trigonometric solutions for $\mathcal{H}^+_{-1/2}$



(a) Spontaneously broken  $\mathcal{PT}$ -symmetry with A = 4 + i, B = 2 - 2i, c = 1,  $\beta = 3/10$  and  $\gamma = 3$ (b) broken  $\mathcal{PT}$ -symmetry with A = 4, B = 2, c = 1,  $\beta = 3/10$ and  $\gamma = 3 + i$ 

Ito type systems Conclusions

#### The $\mathcal{H}^+_{\varepsilon}$ -models

# Elliptic solutions for $\mathcal{H}^+_{-1/2}$ :



(a)  $\mathcal{PT}$ -symmetric with A = 1, B = 3, C = 6,  $\beta = 3/10$ ,  $\gamma = -3$ and c = 1(b) spontaneously broken  $\mathcal{PT}$ -symmetry with A = 1 + i, B = 3 - i, C = 6,  $\beta = 3/10$ ,  $\gamma = -3$  and c = 1

# The $\mathcal{H}_{\varepsilon}^{-}$ -models

Integrating twice gives now:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} - \beta \frac{i^{\varepsilon}}{(1+\varepsilon)(2+\varepsilon)} u^{2+\varepsilon} \right) =: \lambda Q(u)$$

where

The  $\mathcal{H}_{\varepsilon}^{-}$  -models

$$\lambda = -rac{2eta i^arepsilon}{\gamma(1+arepsilon)(2+arepsilon)}$$

For  $\kappa_1 = \kappa_2 = 0$ 

$$u(\zeta) = \left(\frac{c(\varepsilon+1)(\varepsilon+2)}{i^{\varepsilon}\beta\left[\cosh\left(\frac{\sqrt{c}\varepsilon(\zeta-\zeta_0)}{\sqrt{\gamma}}\right)+1\right]}\right)^{1/\varepsilon}$$

The  $\mathcal{H}_{\varepsilon}^{-}$  -models

# • $\mathcal{H}_2^-$ : $\equiv$ complex version of the modified KdV-equation

• 
$$\mathcal{H}_4^-$$
:  
assume  $Q(u) = u^2(u^2 - B^2)(u^2 - C^2)$ , possible for  
 $\kappa_1 = \kappa_2 = 0$ ,  $B = iC$  and  $C^4 = \frac{15c}{c^2}$ 

eigenvalues of Jacobian:

$$j_{1} = \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp\left[\frac{i}{2}(4\theta_{B} + \theta_{\lambda})\right]$$
$$j_{2} = \mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp\left[-\frac{i}{2}(4\theta_{B} + \theta_{\lambda})\right]$$

#### The $\mathcal{H}_{\varepsilon}^{-}$ -models

•  $\mathcal{H}_2^-$ : = complex version of the modified KdV-equation

• 
$$\mathcal{H}_4^-$$
:  
assume  $Q(u) = u^2(u^2 - B^2)(u^2 - C^2)$ , possible for  
 $\kappa_1 = \kappa_2 = 0$ ,  $B = iC$  and  $C^4 = \frac{15c}{\beta}$ 

eigenvalues of Jacobian:

$$j_{1} = \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp\left[\frac{i}{2}(4\theta_{B} + \theta_{\lambda})\right]$$
$$j_{2} = \mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp\left[-\frac{i}{2}(4\theta_{B} + \theta_{\lambda})\right]$$

•  $\mathcal{H}_2^-$ :

The  $\mathcal{H}_{\varepsilon}^{-}$  -models

 $\equiv$  complex version of the modified KdV-equation

• 
$$\mathcal{H}_4^-$$
:  
assume  $Q(u) = u^2(u^2 - B^2)(u^2 - C^2)$ , possible for  
 $\kappa_1 = \kappa_2 = 0$ ,  $B = iC$  and  $C^4 = \frac{15c}{\beta}$ 

eigenvalues of Jacobian:

$$j_{1} = \pm i \sqrt{r_{\lambda}} r_{B}^{2} \exp\left[\frac{i}{2}(4\theta_{B} + \theta_{\lambda})\right]$$
$$j_{2} = \mp i \sqrt{r_{\lambda}} r_{B}^{2} \exp\left[-\frac{i}{2}(4\theta_{B} + \theta_{\lambda})\right]$$
Ito type systems Conclusions

#### The $\mathcal{H}_{\varepsilon}^{-}$ -models

## Broken $\mathcal{PT}$ -symmetric solution for $\mathcal{H}_4^-$ :



(a) star node at the origin for c = 1,  $\beta = 2 + i3$ ,  $\gamma = 1$  and  $B = (15/2 + i3)^{1/4}$ (b) centre at the origin for c = 1,  $\beta = 2 + i3$ ,  $\gamma = -1$  and  $B = (30/13 - i45/13)^{1/4}$  Relation to quantum mechanical Hamiltonians

### Reduction to quantum mechanical Hamiltonians:

Again we can relate to simple quantum mechanical models: The identification

$$u \to x$$
,  $\zeta \to t$ ,  $\kappa_1 = 0$ ,  $\kappa_2 = \gamma E$ , and  $\beta = \gamma g(1+\varepsilon)(2+\varepsilon)$ 

relates  $\mathcal{H}_{\varepsilon}^{-}$  to

$$H = E = \frac{1}{2}p^2 - \frac{c}{2\gamma}x^2 + gx^2(ix)^{\varepsilon}$$

For *c* = 0 these are the "classical models" studied in [C. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243]

Ito type systems Conclusions

Relation to quantum mechanical Hamiltonians

Reduction of the  $\mathcal{H}_2^-$ -model

$$\mathcal{H}_2^-[u] = \frac{\beta}{12}u^4 + \frac{\gamma}{2}u_x^2$$

Twice integrated equation of motion:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} + \beta \frac{1}{12} u^{4} \right) =: \lambda Q(u)$$

Reduction  $u \rightarrow x$ ,  $\zeta \rightarrow t$ 

$$\kappa_1 = -\gamma \tau$$
,  $\kappa_2 = \gamma E_x$ ,  $\beta = -3\gamma g$  and  $c = -\gamma \omega^2$ 

Quartic harmonic oscillator of the form

$$H = E_x = \frac{1}{2}p^2 + \tau x + \frac{\omega^2}{2}x^2 + \frac{g}{4}x^4$$

Boundary cond.:  $\kappa_1 = \tau = 0$ ,  $\lim_{\zeta \to \infty} u(\zeta) = 0$ ,  $\lim_{\zeta \to \infty} u_x(\zeta) = \sqrt{2E_x}$ [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note:  $E_x \neq E_u(a)$ 

Ito type systems Conclusions

Relation to quantum mechanical Hamiltonians

Reduction of the  $\mathcal{H}_2^-$ -model

$$\mathcal{H}_2^-[u] = \frac{\beta}{12}u^4 + \frac{\gamma}{2}u_x^2$$

Twice integrated equation of motion:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} + \beta \frac{1}{12} u^{4} \right) =: \lambda Q(u)$$

Reduction  $u \rightarrow x$ ,  $\zeta \rightarrow t$ 

$$\kappa_1 = -\gamma \tau$$
,  $\kappa_2 = \gamma E_x$ ,  $\beta = -3\gamma g$  and  $c = -\gamma \omega^2$ 

Quartic harmonic oscillator of the form

$$H = E_x = \frac{1}{2}p^2 + \tau x + \frac{\omega^2}{2}x^2 + \frac{g}{4}x^4$$

Boundary cond.:  $\kappa_1 = \tau = 0$ ,  $\lim_{\zeta \to \infty} u(\zeta) = 0$ ,  $\lim_{\zeta \to \infty} u_x(\zeta) = \sqrt{2E_x}$ [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note:  $E_x \neq E_u(a)$ 

Ito type systems Conclusions

Relation to quantum mechanical Hamiltonians

Reduction of the  $\mathcal{H}_2^-$ -model

$$\mathcal{H}_2^-[u] = \frac{\beta}{12}u^4 + \frac{\gamma}{2}u_x^2$$

Twice integrated equation of motion:

$$u_{\zeta}^{2} = \frac{2}{\gamma} \left( \kappa_{2} + \kappa_{1} u + \frac{c}{2} u^{2} + \beta \frac{1}{12} u^{4} \right) =: \lambda Q(u)$$

Reduction  $u \rightarrow x$ ,  $\zeta \rightarrow t$ 

$$\kappa_1 = -\gamma \tau$$
,  $\kappa_2 = \gamma E_x$ ,  $\beta = -3\gamma g$  and  $c = -\gamma \omega^2$ 

Quartic harmonic oscillator of the form

$$H = E_x = \frac{1}{2}p^2 + \tau x + \frac{\omega^2}{2}x^2 + \frac{g}{4}x^4$$

Boundary cond.:  $\kappa_1 = \tau = 0$ ,  $\lim_{\zeta \to \infty} u(\zeta) = 0$ ,  $\lim_{\zeta \to \infty} u_x(\zeta) = \sqrt{2E_x}$ [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

Note:  $E_x \neq E_u(a)$ 

Ito type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Assuming: 
$$Q(u) = (u - A)^2 (u - B)(u - C)$$

$$u(\zeta) = \mathbf{A} + \frac{3(\vartheta - 2c)}{\vartheta e^{\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)} - \mathbf{A}\beta - e^{-\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)}\beta/8}$$

$$\vartheta := \mathbf{3C} + \beta \mathbf{A}^2$$

Reduced solution:

$$\vartheta = 0$$
  $E_x = -\frac{\omega^4}{4g}$  and  $A = i\frac{\omega}{\sqrt{g}}$   
 $x(t) = \frac{\omega}{\sqrt{-g}} \tanh\left[\frac{\omega(t+t_0)}{\sqrt{2}}\right]$ 

Ito type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Assuming: 
$$Q(u) = (u - A)^2 (u - B)(u - C)$$

$$u(\zeta) = \mathbf{A} + \frac{3(\vartheta - 2c)}{\vartheta e^{\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)} - \mathbf{A}\beta - e^{-\sqrt{\frac{\vartheta - 2c}{\gamma}}(\zeta - \zeta_0)}\beta/8}$$

$$\vartheta := \mathbf{3}\mathbf{C} + \beta \mathbf{A}^{\mathbf{2}}$$

### Reduced solution:

$$\vartheta = 0$$
  $E_x = -\frac{\omega^4}{4g}$  and  $A = i\frac{\omega}{\sqrt{g}}$   
 $x(t) = \frac{\omega}{\sqrt{-g}} \tanh\left[\frac{\omega(t+t_0)}{\sqrt{2}}\right]$ 

to type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

### Linearisation about the fixed point *A*: Eigenvalues of the Jacobian matrix

$$j_1 = \pm r_A \sqrt{r_\lambda} \exp\left[\frac{i}{2}(2\theta_A + \theta_\lambda)\right] \quad j_2 = \pm r_A \sqrt{r_\lambda} \exp\left[-\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$$

Recall:  $E_x = -\frac{\omega^4}{4g}$ ,  $\lambda = \frac{\beta}{6\gamma}$ Condition for *A* to be a centre:  $2\theta_A + \theta_\lambda = \pi$ Condition for  $E_x$  to be real:  $4\theta_\omega - \theta_q = 0, \pi$ 

All possible scenarios exist:

periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies for  $\omega \in i\mathbb{R}, g \in \mathbb{R}$ for  $\omega \in i\mathbb{R}, g \notin \mathbb{R}$ for  $\omega \notin i\mathbb{R}, \omega^4/g \in \mathbb{R}$ for  $\omega \notin i\mathbb{R}, \omega^4/g \notin \mathbb{R}$ 

to type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Linearisation about the fixed point *A*: Eigenvalues of the Jacobian matrix

$$j_1 = \pm r_A \sqrt{r_\lambda} \exp\left[\frac{i}{2}(2\theta_A + \theta_\lambda)\right] \quad j_2 = \pm r_A \sqrt{r_\lambda} \exp\left[-\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$$

Recall:  $E_x = -\frac{\omega^4}{4g}$ ,  $\lambda = \frac{\beta}{6\gamma}$ Condition for *A* to be a centre:  $2\theta_A + \theta_\lambda = \pi$ Condition for  $E_x$  to be real:  $4\theta_\omega - \theta_q = 0, \pi$ 

All possible scenarios exist:

periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies for  $\omega \in i\mathbb{R}, g \in \mathbb{R}$ for  $\omega \in i\mathbb{R}, g \notin \mathbb{R}$ for  $\omega \notin i\mathbb{R}, \omega^4/g \in \mathbb{R}$ for  $\omega \notin i\mathbb{R}, \omega^4/g \notin \mathbb{R}$ 

to type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Linearisation about the fixed point *A*: Eigenvalues of the Jacobian matrix

$$j_1 = \pm r_A \sqrt{r_\lambda} \exp\left[\frac{i}{2}(2\theta_A + \theta_\lambda)\right] \quad j_2 = \pm r_A \sqrt{r_\lambda} \exp\left[-\frac{i}{2}(2\theta_A + \theta_\lambda)\right]$$

Recall:  $E_x = -\frac{\omega^4}{4g}$ ,  $\lambda = \frac{\beta}{6\gamma}$ Condition for *A* to be a centre:  $2\theta_A + \theta_\lambda = \pi$ Condition for  $E_x$  to be real:  $4\theta_\omega - \theta_g = 0, \pi$ 

All possible scenarios exist:

periodic orbits with real energies periodic orbits with nonreal energies nonperiodic orbits with real energies nonperiodic orbits with nonreal energies

```
for \omega \in i\mathbb{R}, g \in \mathbb{R}
for \omega \in i\mathbb{R}, g \notin \mathbb{R}
for \omega \notin i\mathbb{R}, \omega^4/g \in \mathbb{R}
for \omega \notin i\mathbb{R}, \omega^4/g \notin \mathbb{R}
```

Ito type systems Conclusions



(a) Periodic orbits E = -25/4 for g = 4,  $\omega = i\sqrt{10}$ (b) Periodic orbits E = -5 + i5/2 for g = 4 + 2i,  $\omega = i\sqrt{10}$ 

to type systems Conclusions



(a) Nonperiodic orbits E = -25/4 for g = -4,  $\omega = e^{i\pi/4}\sqrt{10}$ (b) Nonperiodic orbits E = 25/4i for g = -4i,  $\omega = \sqrt{10}$ 

Introduction Complex KdV equations

Deformations of the KdV equation

to type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Assuming: 
$$Q(u) = (u - A)(u - B)(u - C)(u - D)$$
  
Two free parameters in solution:

$$u(\zeta) = \frac{B(A-D) + A(D-B) \operatorname{sn} \left[ \frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{A-D + (D-B) \operatorname{sn} \left[ \frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{2}$$

Reduction:

$$x(t) = A \operatorname{sn}\left[(t+t_0)A\sqrt{2E_x}\right] - \frac{A^4g}{4E_x}$$

Square root singularity  $\Rightarrow$  no linearisation, alternatively [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

$$x(t) = x(t + n\omega_1 + m\omega_2)$$
 for  $n, m \in \mathbb{Z}$ ,

$$\omega_{1} = \frac{4\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[ \frac{-A^{2}g}{gA^{2} + 2\omega^{2}} \right] \quad \omega_{2} = \frac{i2\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[ \frac{2A^{2}g + 2\omega^{2}}{gA^{2} + 2\omega^{2}} \right]$$
$$n \operatorname{Im} \omega_{1} + m \operatorname{Im} \omega_{2} = 0$$

Introduction Complex KdV equations

Deformations of the KdV equation

to type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Assuming: 
$$Q(u) = (u - A)(u - B)(u - C)(u - D)$$
  
Two free parameters in solution:

$$u(\zeta) = \frac{B(A-D) + A(D-B) \operatorname{sn} \left[ \frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{A-D + (D-B) \operatorname{sn} \left[ \frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{2}$$

Reduction:

$$x(t) = A \operatorname{sn} \left[ (t + t_0) A \sqrt{2E_x} \right] - \frac{A^4 g}{4E_x}$$

Square root singularity  $\Rightarrow$  no linearisation, alternatively [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

$$x(t) = x(t + n\omega_1 + m\omega_2)$$
 for  $n, m \in \mathbb{Z}$ ,

$$\omega_{1} = \frac{4\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[ \frac{-A^{2}g}{gA^{2} + 2\omega^{2}} \right] \quad \omega_{2} = \frac{i2\sqrt{2}}{\sqrt{gA^{2} + 2\omega^{2}}} K \left[ \frac{2A^{2}g + 2\omega^{2}}{gA^{2} + 2\omega^{2}} \right]$$
$$n \operatorname{Im} \omega_{1} + m \operatorname{Im} \omega_{2} = 0$$

Introduction Complex KdV equations

Deformations of the KdV equation

to type systems Conclusions

The quartic harmonic oscillator from complex modified KDV

Assuming: 
$$Q(u) = (u - A)(u - B)(u - C)(u - D)$$
  
Two free parameters in solution:

$$u(\zeta) = \frac{B(A-D) + A(D-B) \operatorname{sn} \left[ \frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{A-D + (D-B) \operatorname{sn} \left[ \frac{\sqrt{\lambda(B-C)(A-D)}}{2} (\zeta - \zeta_0) | \frac{(A-C)(B-D)}{(B-C)(A-D)} \right]^2}{2}$$

Reduction:

$$x(t) = A \operatorname{sn} \left[ (t + t_0) A \sqrt{2E_x} \right] - \frac{A^4 g}{4E_x}$$

Square root singularity  $\Rightarrow$  no linearisation, alternatively [A.G. Anderson, C. Bender, U. Morone, arXiv:1102.4822]

$$x(t) = x(t + n\omega_1 + m\omega_2)$$
 for  $n, m \in \mathbb{Z}$ ,

$$\omega_1 = \frac{4\sqrt{2}}{\sqrt{gA^2 + 2\omega^2}} \mathcal{K}\left[\frac{-A^2g}{gA^2 + 2\omega^2}\right] \quad \omega_2 = \frac{i2\sqrt{2}}{\sqrt{gA^2 + 2\omega^2}} \mathcal{K}\left[\frac{2A^2g + 2\omega^2}{gA^2 + 2\omega^2}\right]$$
$$n \operatorname{Im} \omega_1 + m \operatorname{Im} \omega_2 = 0$$

The quartic harmonic oscillator from complex modified KDV

#### Note:

One needs  $t \to t + it_0$ ,  $t_0 \in \mathbb{R}$  to avoid pole  $t = (n\omega_1 + m\omega_2)/2$ 



Ito type systems Conclusions



Ito type systems Conclusions



to type systems Conclusions



Ito type systems Conclusions



#### The undeformed model

### Ito type systems and its deformations Coupled nonlinear system

$$\begin{aligned} u_t + \alpha v v_x + \beta u u_x + \gamma u_{xxx} &= \mathbf{0}, & \alpha, \beta, \gamma \in \mathbb{C}, \\ v_t + \delta (u v)_x + \phi v_{xxx} &= \mathbf{0}, & \delta, \phi \in \mathbb{C} \end{aligned}$$

Hamiltonian for  $\delta = \alpha$ 

$$\mathcal{H}_I = -\frac{\alpha}{2}uv^2 - \frac{\beta}{6}u^3 + \frac{\gamma}{2}u_x^2 + \frac{\phi}{2}v_x^2$$

 $\mathcal{PT}$ -symmetries:

 $\begin{array}{ll} \mathcal{PT}_{++} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto v & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{+-} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto -v & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{-+} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto v & \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{--} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto -v & \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R} \end{array}$ 

#### The undeformed model

### Ito type systems and its deformations Coupled nonlinear system

Hamiltonian for  $\delta = \alpha$ 

$$\mathcal{H}_{I} = -\frac{\alpha}{2}uv^{2} - \frac{\beta}{6}u^{3} + \frac{\gamma}{2}u_{x}^{2} + \frac{\phi}{2}v_{x}^{2}$$

 $\mathcal{PT}$ -symmetries:

 $\begin{array}{ll} \mathcal{PT}_{++} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto v & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{+-} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto u, v \mapsto -v & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{-+} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto v & \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{--} : x \mapsto -x, t \mapsto -t, i \mapsto -i, u \mapsto -u, v \mapsto -v & \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R} \end{array}$ 

Ito type systems Conclusions

#### The undeformed model

### Ito type systems and its deformations Coupled nonlinear system

$$\begin{aligned} u_t + \alpha v v_x + \beta u u_x + \gamma u_{xxx} &= \mathbf{0}, & \alpha, \beta, \gamma \in \mathbb{C}, \\ v_t + \delta(uv)_x + \phi v_{xxx} &= \mathbf{0}, & \delta, \phi \in \mathbb{C} \end{aligned}$$

Hamiltonian for  $\delta = \alpha$ 

$$\mathcal{H}_{I} = -\frac{\alpha}{2}uv^{2} - \frac{\beta}{6}u^{3} + \frac{\gamma}{2}u_{x}^{2} + \frac{\phi}{2}v_{x}^{2}$$

 $\mathcal{PT}$ -symmetries:

$$\begin{array}{ll} \mathcal{PT}_{++}: \mathbf{x} \mapsto -\mathbf{x}, t \mapsto -t, i \mapsto -i, u \mapsto u, \mathbf{v} \mapsto \mathbf{v} & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{+-}: \mathbf{x} \mapsto -\mathbf{x}, t \mapsto -t, i \mapsto -i, u \mapsto u, \mathbf{v} \mapsto -\mathbf{v} & \text{for } \alpha, \beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{-+}: \mathbf{x} \mapsto -\mathbf{x}, t \mapsto -t, i \mapsto -i, u \mapsto -u, \mathbf{v} \mapsto \mathbf{v} & \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R} \\ \mathcal{PT}_{--}: \mathbf{x} \mapsto -\mathbf{x}, t \mapsto -t, i \mapsto -i, u \mapsto -u, \mathbf{v} \mapsto -\mathbf{v} & \text{for } i\alpha, i\beta, \gamma, \phi \in \mathbb{R} \\ \end{array}$$

Ito type systems Co

Deformed models

### **Deformed models**

$$\begin{aligned} \mathcal{H}_{\varepsilon,\mu}^{++} &= -\frac{\alpha}{2}uv^2 - \frac{\beta}{6}u^3 - \frac{\gamma}{1+\varepsilon}(iu_x)^{\varepsilon+1} - \frac{\phi}{1+\mu}(iv_x)^{\mu+1} \\ \mathcal{H}_{\varepsilon,\mu}^{+-} &= \frac{\alpha}{1+\mu}u(iv)^{\mu+1} - \frac{\beta}{6}u^3 - \frac{\gamma}{1+\varepsilon}(iu_x)^{\varepsilon+1} + \frac{\phi}{2}v_x^2 \\ \mathcal{H}_{\varepsilon,\mu}^{-+} &= -\frac{\alpha}{2}uv^2 - \frac{i\beta}{(1+\varepsilon)(2+\varepsilon)}(iu)^{2+\varepsilon} + \frac{\gamma}{2}u_x^2 - \frac{\phi}{1+\mu}(iv_x)^{\mu+1} \\ \mathcal{H}_{\varepsilon,\mu}^{--} &= \frac{\alpha}{1+\mu}u(iv)^{\mu+1} - \frac{i\beta}{(1+\varepsilon)(2+\varepsilon)}(iu)^{2+\varepsilon} + \frac{\gamma}{2}u_x^2 + \frac{\phi}{2}v_x^2 \end{aligned}$$

with equations of motion

$$\begin{aligned} u_t + \alpha v v_x + \beta u u_x + \gamma u_{xxx,\varepsilon} &= 0, \quad u_t + \alpha v_\mu v_x + \beta u u_x + \gamma u_{xxx,\varepsilon} &= 0, \\ v_t + \alpha (uv)_x + \phi v_{xxx,\mu} &= 0, \quad v_t + \alpha (uv_\mu)_x + \phi v_{xxx} &= 0, \end{aligned}$$

$$\begin{aligned} u_t + \alpha v v_x + \beta u_\varepsilon u_x + \gamma u_{xxx} &= 0, \quad u_t + \alpha v_\mu v_x + \beta u_\varepsilon u_x + \gamma u_{xxx} &= 0, \\ v_t + \alpha (uv)_x + \phi v_{xxx,\mu} &= 0, \quad v_t + \alpha (uv_\mu)_x + \phi v_{xxx} &= 0. \end{aligned}$$

Ito type systems Conclusions

#### Deformed models

### **Solution procedure**

• similar as for KdV, but the degrees of the polynomials is higher

type II R(v) = v(v - A)<sup>2</sup>(v - B)<sup>2</sup>
eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[ \cos\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \cos\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right] + i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[ \sin\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \sin\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right]$$

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v(v-A)(v-B)}} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[ cA^2 + \kappa_2 A + \frac{\beta}{3} \left( \frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

Ito type systems Conclusions

#### Deformed models

# **Solution procedure**

• similar as for KdV, but the degrees of the polynomials is higher

• type II  $R(v) = v(v - A)^2(v - B)^2$ 

• eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[ \cos\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \cos\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right] + i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[ \sin\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \sin\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right]$$

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v(v-A)(v-B)}} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[ cA^2 + \kappa_2 A + \frac{\beta}{3} \left( \frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

#### Deformed models

### Solution procedure

- similar as for KdV, but the degrees of the polynomials is higher
- type II  $R(v) = v(v A)^2(v B)^2$
- eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[ \cos\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \cos\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right] + i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[ \sin\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \sin\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right]$$

$$E_{T_A} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v(v-A)(v-B)}} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_2}}{\alpha\sqrt{A}(A-B)} \left[ cA^2 + \kappa_2 A + \frac{\beta}{3} \left( \frac{c}{\alpha} + \frac{\kappa_2}{\alpha A} \right)^3 \right]$$

#### Deformed models

### **Solution procedure**

- similar as for KdV, but the degrees of the polynomials is higher
- type II  $R(v) = v(v A)^2(v B)^2$
- eigenvales of the Jacobian:

$$j_{k} = \pm \sqrt{r_{A}r_{\lambda}} \left[ \cos\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \cos\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right] \\ + i(-1)^{k} \sqrt{r_{A}r_{\lambda}} \left[ \sin\left(\frac{3\theta_{A}}{2} + \frac{\theta_{\lambda}}{2}\right) r_{A} - \sin\left(\frac{\theta_{A}}{2} + \theta_{B} + \frac{\theta_{\lambda}}{2}\right) r_{B} \right]$$

$$E_{T_{A}} = \oint_{\Gamma} \mathcal{H}[v(\zeta)] \frac{dv}{v_{\zeta}} = \oint_{\Gamma} \frac{\mathcal{H}[v]}{\sqrt{\lambda}\sqrt{v(v-A)(v-B)}} dv$$
$$= -\pi \frac{\sqrt{-\gamma\kappa_{2}}}{\alpha\sqrt{A}(A-B)} \left[ cA^{2} + \kappa_{2}A + \frac{\beta}{3} \left( \frac{c}{\alpha} + \frac{\kappa_{2}}{\alpha A} \right)^{3} \right]$$

Ito type systems Conclusions

#### Deformed models



 $E_{T_A} \approx -0.4275$ (a) *v*-field (b) *u*-field

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken *PT*-symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

# • the type of trajectory does not tell which scenario we are in

- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken *PT*-symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken *PT*-symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken *PT*-symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken *PT*-symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken *PT*-symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- $\bullet$  possible to have broken  $\mathcal{PT}\text{-symmetry}$  with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations
- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken  $\mathcal{PT}\text{-symmetry}$  with real energies
- solitons as in real case, broken  $\mathcal{PT}\text{-symmetry} \Rightarrow \text{breather}$
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken  $\mathcal{PT}$ -symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken  $\mathcal{PT}$ -symmetry with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken  $\mathcal{PT}\text{-symmetry}$  with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

- the type of trajectory does not tell which scenario we are in
- all types of fixed points occur (except saddle points)
- there is no chaos by Poincaré-Bendixson theorem
- not Hamiltonian in Re(u), Im(u)
- energies can be computed effectively in complex models
- possible to have broken  $\mathcal{PT}\text{-symmetry}$  with real energies
- solitons as in real case, broken  $\mathcal{PT}$ -symmetry  $\Rightarrow$  breather
- deformed models extend over several Riemann sheets
- new features in Ito systems, such as kink or cusp solutions
- quantum mechanical models result from simple reductions
- we expect similar behaviour for other nonlinear equations

#### Thank you for your attention