Analysis of exceptional points in open quantum systems and QPT analogy for the appearance of the resonance state

Savannah Garmon
University of Toronto, Chemical Physics Theory Group

Support:
Center for Quantum Information and Quantum Control

Max Planck Institute for the
Physics of Complex Systems

Collaborators:
Dvira Segal, University of Toronto
Ingrid Rotter, MPI-PKS
Naomichi Hatano,
University of Tokyo

Outline

Orientation:

> Description of open quantum systems (introduce prototype model)
> Exceptional points: basic concepts
Prototype model - semi-infinite chain with endpoint impurity:
> System geometry and Hamiltonian

- Eigenvalue spectrum and system discriminant
> Study of eigenvalues in the vicinity of real-valued EPs - adiabatic transport - eigenvalue expansion

Generalization for open quantum systems:
> Detailed formalism: OQS and EPs (Kato)
> General method to locate and analyze EPs in open quantum systems

QPT analogy for appearance of Fano resonance:

> Dynamical phase transition for channel-coupled resonances
> QPT analogy at EP - spontaneous time-symmetry breaking complex Helmholtz free energy

Open Quantum Systems

Open quantum system consists of:
$>$ Discrete system H_{D}
> Embedded in a larger system (continuum) H_{C}
> Coupled via $H_{D C}$

Examples:
> Atoms/molecules interacting with \mathbf{E} and/or \mathbf{B} field(s)
[$\mathrm{H}_{2}{ }^{+}$ion exposed to laser light:
R. Lefebvre, O. Atabek, M. Šindelka, and N. Moiseyev

Phys. Rev. Lett. 103, 123003 (2009).]
> Antenna leads used to probe an electromagnetic cavity
[Probing an electromagnetic cavity:
C. Dembowski, et al.

Phys. Rev. Lett. 103, 123003 (2009).]

Open Quantum Systems: Prototype model

Prototype: semi-infinite chain with end-point impurity
discrete
component: $H_{\mathrm{D}} \longrightarrow \square H_{\mathrm{DC}}{\text { 个 continuum: } H_{\mathrm{C}}}^{\square}$

$$
H=H_{D}+H_{C}+H_{D C}
$$

$$
H=\varepsilon_{d} d^{+} d-\frac{1}{2} \sum_{i=1}^{\infty}\left(c_{i}^{+} c_{i+1}+c_{i+1}^{+} c_{i}\right)+\frac{g}{\sqrt{2}}\left(c_{1}^{+} d+d^{+} c_{1}\right)
$$

Exceptional Points - Basic Concepts

Exceptional points (EPs):
$>$ Occur in the discrete spectrum of a finite Hamiltonian
> 'Defective' points in parameter space at which at least two eigenvalues coalesce

- Eigenvalues share a common branch point in parameter space
> There exist $N(N-1)$ EPs for an N-dimensional system

Adiabatic encirlement of EP: eigenvalues will be rotated into one another

Formalism: Tosio Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin (1980), pp. 62-66.

EPs in the photodissociation spectrum of H_{2}^{+}

Lefebvre, et al numerically study EPs in the spectrum of an $\mathrm{H}_{2}{ }^{+}$ion exposed to laser light

Adiabatic variation of two system parameters:

$$
\begin{aligned}
& I=I_{\max } \sin (\phi / 2) \\
& \lambda=\lambda_{0}+\delta \lambda \sin (\phi)
\end{aligned}
$$

Encircling the EP we may populate the $v=9$ state through the $\mathrm{v}=8$ state, etc.
R. Lefebvre, O. Atabek, M. Šindelka, and N. Moiseyev Phys. Rev. Lett. 103, 123003 (2009).

EPs: Experimental observation in the modes of a microwave cavity

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86, 787 (2001).

Adiabatic variation of the $8^{\text {th }}$ and $9^{\text {th }}$ eigenmodes:

Prototype model: Hamiltonian

System geometry:

$$
H=\varepsilon_{d} d^{+} d-\frac{1}{2} \sum_{i=1}^{\infty}\left(c_{i}^{+} c_{i+1}+c_{i+1}^{+} c_{i}\right)+\frac{g}{\sqrt{2}}\left(c_{1}^{+} d+d^{+} c_{1}\right)
$$

(gives rise to a quadratic discrete spectrum)

Prototype model: band spectrum

Introduce Fourier series:

$$
c_{k}^{\dagger}=\sqrt{\frac{2}{\pi}} \sum_{i=1}^{N} \sin n k c_{n}^{\dagger}
$$

to re-write Hamiltonian as

$$
H=\varepsilon_{d} d^{\dagger} d+\int_{0}^{\pi} \varepsilon_{k} c_{k}^{\dagger} c_{k}+g \int_{0}^{\pi} V_{k}\left(c_{k}^{\dagger} d+d^{\dagger} c_{k}\right)
$$

$$
(N \rightarrow \infty)
$$

Continuum:

$$
k \in[0, \pi] \text { on } \varepsilon_{k}=-\cos k
$$

Prototype model: discrete spectrum

$$
H=\varepsilon_{d} d^{\dagger} d+\int_{0}^{\pi} \varepsilon_{k} c_{k}^{\dagger} c_{k}+g \int_{0}^{\pi} V_{k}\left(c_{k}^{\dagger} d+d^{\dagger} c_{k}\right)
$$

Final diagonalization may be performed. Obtain the discrete spectrum from:

$$
\langle d| \frac{1}{z-H}|d\rangle=\frac{1}{z-\varepsilon_{d}-\Xi_{s}(z)} \text { in which } \Sigma(z)=g^{2}\left(z-\sqrt{z^{2}-1}\right)
$$

We have:

$$
z-\varepsilon_{d}=\Sigma(z)=g^{2}\left(z-\sqrt{z^{2}-1}\right)
$$

Prototype model: system discriminant I

Square the dispersion relation

$$
z-\varepsilon_{d}=g^{2}\left(z-\sqrt{z^{2}-1}\right)
$$

to obtain quadratic polynomial equation with

$$
q(z)=0
$$

$$
q(z)=\left(1-2 g^{2}\right) z^{2}-2 \varepsilon_{d}\left(1-g^{2}\right) z+\varepsilon_{d}^{2}+g^{4}
$$

Combine with

$$
q^{\prime}(z)=2\left(1-2 g^{2}\right) z-2 \varepsilon_{d}\left(1-g^{2}\right)=0
$$

To obtain discriminant:

$$
\frac{D\left(\varepsilon_{d}, g\right)=-4 g^{4}\left(1-2 g^{2}\right)\left(\varepsilon_{d}^{2}-\left(1-2 g^{2}\right)\right)}{f_{1}(g) \equiv 1-2 g^{2} \quad f_{2}\left(\varepsilon_{d}, g\right) \equiv \varepsilon_{d}^{2}-\left(1-2 g^{2}\right)}
$$

Prototype model: system discriminant II

Discriminant:

$$
D\left(\varepsilon_{d}, g\right)=-4 g^{4} f_{1}(g) f_{2}\left(\varepsilon_{d}, g\right) \quad\left\{\begin{array}{c}
f_{1}(g)=1-2 g^{2} \\
f_{2}\left(\varepsilon_{d}, g\right)=\varepsilon_{d}^{2}-\left(1-2 g^{2}\right)
\end{array}\right.
$$

$$
f_{2}\left(\varepsilon_{d}, g\right)=0 \text { gives two EPs: } \quad \varepsilon_{d}=\bar{\varepsilon}_{ \pm} \equiv \pm \sqrt{1-2 g^{2}}
$$

For $g<1 / \sqrt{2}(g>1 / \sqrt{2})$ these EPs are real-valued (pure imaginary).

$$
g=1 / \sqrt{2} \rightarrow \text { special case. }
$$

Then $f_{1}(g)=0$ shows $g=1 / \sqrt{2}$ is an EP in its own right!
(pure coincidence)
We will focus on real-valued case $g<1 / \sqrt{2}$ for now.

Discrete eigenvalues and adiabatic properties of the EPs

Solve $q(z)=0$ for exact solutions (quadratic):

$$
z_{ \pm}\left(\varepsilon_{d}, g\right)=\varepsilon_{d} \frac{1-g^{2}}{1-2 g^{2}} \pm g^{2} \frac{\sqrt{\varepsilon_{d}^{2}-\left(1-2 g^{2}\right)}}{1-2 g^{2}}
$$

We have (anti-)resonant state for $\left|\varepsilon_{d}\right|>\sqrt{1-2 g^{2}}>0$ with complex part $\Gamma_{ \pm}= \pm g^{2} \frac{\left.\sqrt{\varepsilon_{d}^{2}-\left(1-2 g^{2}\right.}\right)}{1-2 g^{2}}$

Adiabatic coordinate rotation:

$$
\left(\varepsilon_{d}(\theta)\right)^{2}=1-2 g^{2}+\delta e^{i \theta}
$$

Then $\Gamma_{ \pm}(\theta)= \pm \frac{g^{2} \sqrt{\delta}}{\left(1-2 g^{2}\right)} e^{i \theta / 2}$
and $\Gamma_{ \pm}(2 \pi) \rightarrow \Gamma_{\mp}(0)$

Discrete spectrum: level shift

complex conjugate pair forms at realvalued EP

Discrete spectrum: resonance state at EP

Discrete spectrum: effective k values

Discrete spectrum: eigenvalue expansion at EP

$$
f_{2}\left(\varepsilon_{d}, g\right) \equiv \varepsilon_{d}^{2}-\left(1-2 g^{2}\right)=\left(\varepsilon_{d}-\bar{\varepsilon}_{+}\right)\left(\varepsilon_{d}-\bar{\varepsilon}_{-}\right)
$$

Eigenvalue expansion in the vicinity of $\varepsilon_{d} \approx \bar{\varepsilon}_{ \pm}$

$$
z_{s}=\frac{1+\bar{\varepsilon}_{ \pm}^{2}}{2 \bar{\varepsilon}_{ \pm}}+s \frac{1-\bar{\varepsilon}_{ \pm}^{2}}{2 \bar{\varepsilon}_{ \pm}^{2}}\left(f_{2}\left(\varepsilon_{d}, g\right)\right)^{1 / 2}+\frac{1}{2 \bar{\varepsilon}_{ \pm}} \sum_{n=2}^{\infty}\left(\frac{s\left(f_{2}\left(\varepsilon_{d}, g\right)\right)^{1 / 2}}{\bar{\varepsilon}_{ \pm}}\right)^{n} \quad(s= \pm)
$$

Comparison: superconducting nanowires driven with electric currents

J. Rubinstein, P. Sternberg, and Q. Ma, Phys. Rev. Lett. 99, 167003 (2007).
Bifurcation Diagram and Pattern Formation of Phase Slip Centers in Superconducting Wires Driven with Electric Currents

fractional power series for eigenvalue

FIG. 1 (color online). The real parts of the first six eigenvalues of the $P T$-symmetric spectral problem (3).

Generalization of discussion: Open quantum systems - Formalism

Generic Hamiltonian: $\quad H=H_{D}+H_{C}+H_{D C}$
Specific case, single level discrete sector:

$$
H_{D}=\varepsilon_{d} d^{+} d \quad H_{D C}=g V \quad\left(\text { system parameters : } \varepsilon_{d}, g\right)
$$

Finite level spectrum given by the roots of:

$$
z-\varepsilon_{d}=\Sigma(z)
$$

From this equation we obtain the system discriminant:

$$
\begin{gathered}
D\left(\varepsilon_{d}, g\right)=f_{1}\left(\varepsilon_{d}, g\right) \times f_{2}\left(\varepsilon_{d}, g\right) \times \cdots \times f_{r}\left(\varepsilon_{d}, g\right) \\
f_{i}\left(\bar{\varepsilon}_{d}, \bar{g}\right)=0 \leftarrow \text { necessary and sufficient condition for an EP } \quad \bar{\varepsilon}_{d}=\bar{\varepsilon}_{d}(\bar{g})
\end{gathered}
$$

Formalism continued: Cycle structure around an EP

Eigenvalues organize into cycles in the vicinity of a given EP:

$$
\left\{z_{1}(x), \ldots, z_{p-1}(x), z_{p}(x)\right\},\left\{z_{p+1}(x), \ldots, z_{p+q-1}(x), z_{p+q}(x)\right\}, \ldots
$$

Adiabatic revolution around exceptional point $x=\bar{x}$

$$
\left\{z_{1}(x), \ldots, z_{p-1}(x), z_{p}(x)\right\} \rightarrow\left\{z_{2}(x), \ldots, z_{p}(x), z_{1}(x)\right\}
$$

For a given cycle, the center is the energy value where the p eigenvalues coalesce:

$$
\bar{z}_{c}=z_{1}(x=\bar{x})=\ldots=z_{p}(x=\bar{x})
$$

Formalism continued: Eigenvalue expansion

We may expand the eigenvalues in the vicinity of the EP:

$$
\begin{equation*}
z_{h}(x)=\bar{z}_{c}+\beta_{1} \omega^{h}(x-\bar{x})^{1 / p}+\beta_{2} \omega^{2 h}(x-\bar{x})^{2 / p}+\ldots \tag{Kato}
\end{equation*}
$$

with $\omega=e^{2 \pi i / p}, h=0, \ldots, 1-p$

Heuristic generalization:

$$
z_{h}(x)=\bar{z}_{c}+\beta_{1} \omega^{h}\left(f_{j}(x)\right)^{1 / p}+\beta_{2} \omega^{2 h}\left(f_{j}(x)\right)^{2 / p}+\ldots
$$

$f_{j}(x)$ are polynomials from the system discriminant

General method to find EPs in open quantum systems

Idea: take advantage that eigenvalue derivative diverges at the $E P$

From general dispersion $z-\varepsilon_{d}=\Sigma(z)$
take derivative to obtain

$$
\begin{equation*}
\frac{\mathrm{d} \Sigma\left(\mathrm{z}_{0}\right)}{\mathrm{dz}}=1-\frac{1}{\partial z_{0} / \partial \varepsilon_{d}} \tag{2}
\end{equation*}
$$ at the EP :

$$
\begin{equation*}
\left.\frac{\mathrm{d} \Sigma\left(\mathrm{z}_{0}\right)}{\mathrm{dz} \mathrm{z}_{0}}\right|_{z_{0}=\bar{z}_{c}}=1 \tag{3}
\end{equation*}
$$

Use (3) to find the center \bar{z}_{c} then plug this result in (1) to locate EP.
Expand (2) to obtain higher terms and use

$$
p=\frac{1}{2 \pi i} \oint_{C_{\bar{z}_{c}}} \frac{\partial}{\partial z} \log \langle d| \frac{1}{z-H}|d\rangle d z
$$

Motivation for p-value equation

$$
p=\frac{1}{2 \pi i} \oint_{C_{\bar{z}_{c}}} \frac{\partial}{\partial z} \log \left(d\left|\frac{1}{z-H}\right| d\right) d z=\frac{1}{2 \pi i} \oint_{C_{\bar{z}_{c}}} \frac{\frac{d}{d z}\left[z-\varepsilon_{d}-\Xi(z)\right]}{z-\varepsilon_{d}-\Xi(z)} d z
$$

In the vicinity of the EP:

$$
z-\varepsilon_{d}-\Xi(z) \sim\left(z-\bar{z}_{c}\right)^{p}
$$

So we have

$$
\frac{\frac{d}{d z}\left[z-\varepsilon_{d}-\Xi(z)\right]}{z-\varepsilon_{d}-\Xi(z)} \sim \frac{p}{z-\bar{z}_{c}}
$$

Dynamical phase transition in open quantum systems

C. Jung, M. Müller, and I. Rotter, Phys. Rev. E 60, 114 (1999).

They study a line of resonant states coupled through a common decay channel

Complex energy plane
parameterized through the common coupling parameter α

\rightarrow Interprets decay rate as the order parameter in this dynamical phase transition

QPT analogy for the real-valued EPs

For our case, we propose: Order parameter $\quad \Gamma_{\text {res }} \sim \lambda^{1 / 2}$

$$
\text { With } \lambda=f_{2}\left(\varepsilon_{d}, g\right)=\varepsilon^{2}-\bar{\varepsilon}_{\gamma}^{2}
$$

Correlations through the resonant state:

$$
C_{r e s}(x ; d)=\frac{1}{2 \pi i} \oint_{\Gamma_{-}} d z\langle x| \frac{1}{z-H}|d\rangle \sim e^{\log \sqrt{1-2 g^{2}} x} e^{i \varphi_{r s} x}
$$

With $\varphi_{\text {res }}=\arctan \left(\lambda^{1 / 2} / \varepsilon_{d}\right) \quad$ 'channel correlation' $\xi \sim \lambda^{-1 / 2}$

$$
\text { Scaling: } \quad \Gamma_{r e s} \sim \xi^{-z} \sim \lambda^{1 / 2}
$$

Conclusions

> Generalization of Kato's expression for eigenvalue expansion in the vicinity of EPs
> General technique to determine the position of EPs and the eigenvalue expansion in open quantum systems
> We applied this to our prototype model - semi-infinite chain with endpoint impurity
> Transition from real-valued EPs to complex EPs:
$>$ Fano resonance to avoided level crossing
$>$ Behavior of system across critical value $g_{\text {cr }}$
> QPT analogy at real-valued EPs:
> Decay rate as order parameter
> Channel correlations and dynamical critical exponent
> Complex free energy - fractional powers as critical exponents

