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Orientation:
> Description of open quantum systems (introduce prototype model)
> Exceptional points: basic concepts

Prototype model — semi-infinite chain with endpoint impurity:

> System geometry and Hamiltonian

> Eigenvalue spectrum and system discriminant

> Study of eigenvalues in the vicinity of real-valued EPs — adiabatic
transport — eigenvalue expansion

tion for open quantum systems:
ism: OQS and EPs (Kat



Open Quantum Systems

Open quantum system consists of:
» Discrete system H,

> Embedded in a larger system (continuum) H
» Coupled via Hp

Examples:

oms/molecules interacting with E and/or B field(s)
[ H," 1on exposed to laser li



Open Quantum Systems: Prototype model

Prototype: semi-infinite chain
with end-point impurity

discrete
component: H, —>
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Exceptional Points — Basic Concepts

Exceptional points (EPs):

> Occur in the discrete spectrum of a finite Hamiltonian

> ‘Defective’ points in parameter space at which at least two
eigenvalues coalesce

> Eigenvalues share a common branch point in parameter space
> There exist N(N-1) EPs for an N-dimensional system




EPs 1n the photodissociation spectrum of H,"

Lefebvre, et al numerically study EPs in the

spectrum of an H,* ion exposed to laser light g ._
Adiabatic variation of
two system parameters:
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EPs: Experimental observation
in the modes of a microwave cavity

C. Dembowski, H.-D. Grif, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld,
and A. Richter, Phys. Rev. Lett. 86, 787 (2001).

Top view of
microwave cavity

Adiabatic variation of the 8t and 9t eigenmodes:
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Prototype model: Hamiltonian
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Prototype model: band spectrum

Introduce Fourier series: 7
cZ = —Esinnk cz
T i1

to re-write Hamiltonian as

i T A g i t
H=¢dd +f0 €.C.C, +gf0 Vicd+dc)




Prototype model: discrete spectrum

i P o g i t
H=¢dd +f0 £.C,C, +gf0 Vicd+dc)

Final diagonalization may be performed. Obtain the discrete
spectrum from:

in which 2(z) =




Prototype model: system discriminant I

Square the dispersion relation Z-¢E, = g (z-+z" -1

’\t/(si&btain quadratic polynomial equation q(z) =0

q(2) =(1-2g")z" -2¢,(1-g")z+¢, + ¢

mbine with

=2(1-2g)z-2¢ (1-




Prototype model: system discriminant II

Discriminant:

f(g)=1-2¢°
f,(,.8) =€, -(1-2g%

D(e .g) = -48" f(2)f,(€,.8) {

+4/1-2g"

f,(€,.8) =0| givestwo EPs: & =E,

<1/A2 (g > 1/\/5) these EPs are real-valued (pure imagi




Discrete eigenvalues
and adiabatic properties of the EPs

Solve g(z) = 0 for exact solutions (quadratic):

1-g® e ~(1-2¢")
1-2g° 8 1-2g°

Zi (gd ’g) - gd

I-)resonant state for ‘g d‘ >+/1-2¢* >0 with complex part [ ==




Discrete spectrum: level shift

complex conjugate
pair forms at real-

valued EP \2

Re z.

| £

two anti-bound states
«—— (27d sheet) collide at

real-valued EP

bound states

gd =8¢




Discrete spectrum: resonance state at EP
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Discrete spectrum: effective £ values
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Discrete spectrum:
eigenvalue expansion at EP

Re z.
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Comparison: superconducting nanowires
driven with electric currents

J. Rubinstein, P. Sternberg, and Q. Ma, Phys. Rev. Lett. 99, 167003 (2007).

Bifurcation Diagram and Pattern Formation of Phase Slip Centers in
Superconducting Wires Driven with Electric Currents
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eigenvalue is 1. To find thq behavior of the spectrum near
I, we set the current / to b/ = I, + €a. Here € is a small
positive number, and we infoduce a to determine through
its sign the direction in whigh we move from I.,. We then
consider an expansion of
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The nonanalytic nature of the expansion for A is a conse-
quence of the Jordan form of the spectral problem at the
critical value [ = I,. The leading order term in (4) is

FIG. 1 (color online). The real parts of the first six eigenvalues
of the PT-symmetric spectral problem (3).




Generalization of discussion:
Open quantum systems — Formalism

Generic Hamiltonian. H=H +H +H
D C DC

Specific case, single level discrete sector:

H = gdd+d H =gV (system parameters: € ,g)

DC

ite level spectrum given by the roots of:




Formalism continued:
Cycle structure around an EP

Eigenvalues organize into cycles in the vicinity of a given EP:

{20, +vr 2yt (02 2, (D) {2y (D), e Zyrga (01 2y g (s o

Adiabatic revolution around exceptional point x = X

coer Z,(X), 2,(0)} = {z,(%), ..., z,(x), 2



Formalism continued: Eigenvalue expansion

We may expand the eigenvalues in the vicinity of the EP:
z,(X)=7 + [J’la)h(x -x)"7 + [)’za)”’(x %) +... (Kato)

withw =e™'?, h =0, ..., 1-p




General method to find EPs
In open quantum systems

|dea: take advantage that eigenvalue derivative diverges at the EP

From general dispersion z —¢& L= 2(z) (1)

take derivative to obtain at the EP :




Motivation for p-value equation

In the vicinity of the EP:

- —= ~(7 =7 )
z-€,-E(2)~(z-2)



Dynamical phase transition
In open quantum systems

C. Jung, M. Miiller, and I. Rotter, Phys. Rev. E 60, 114 (1999).

They study a line of resonant states coupled through a common
decay channel
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aligns with decay channel; system
re-organization

Small o resonances have a
similar shape/magnitude

=> |Interprets decay rate as the order parameter in this dynamical phase transition



QPT analogy for the real-valued EPs

1/2
For our case, we propose: Order parameter I’ ~ A

o 2 32
With A= f (e,.8)=¢ — €
Correlations through the resonant state:

1
z—-H

- 1 logw[1—2g2x i, X
Cres(x,d) = Egﬁr dz <x ‘d> ~e e




Conclusions

> Generalization of Kato’s expression for eigenvalue expansion
in the vicinity of EPs

> General technique to determine the position of EPs and the
eigenvalue expansion in open quantum systems

» We applied this to our prototype model — semi-infinite chain with
endpoint impurity

ransition from real-valued EPs to complex EPs:
nance to avoided level crossi




