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   Description of open quantum systems (introduce prototype model) 
   Exceptional points: basic concepts 

Generalization for open quantum systems: 
   Detailed formalism: OQS and EPs (Kato) 
   General method to locate and analyze EPs in open quantum systems 

Prototype model – semi-infinite chain with endpoint impurity: 
   System geometry and Hamiltonian 
   Eigenvalue spectrum and system discriminant 
   Study of eigenvalues in the vicinity of real-valued EPs – adiabatic  
     transport – eigenvalue expansion 

QPT analogy for appearance of Fano resonance: 
   Dynamical phase transition for channel-coupled resonances 
   QPT analogy at EP – spontaneous time-symmetry breaking – 
     complex Helmholtz free energy 



Open Quantum Systems 

Open quantum system consists of: 

   Coupled via HDC 
   Embedded in a larger system (continuum) HC 

   Discrete system HD 

Examples: 
   Atoms/molecules interacting with E and/or B field(s) 

[ H2
+ ion exposed to laser light: 

R. Lefebvre, O. Atabek, M. Šindelka, and N. Moiseyev 
Phys. Rev. Lett. 103, 123003 (2009).] 

   Antenna leads used to probe an electromagnetic cavity 
[ Probing an electromagnetic cavity: 
C. Dembowski, et al. 
Phys. Rev. Lett. 103, 123003 (2009).] 



Open Quantum Systems: Prototype model 

Prototype: semi-infinite chain 
with end-point impurity 

continuum: HC 
discrete  
component: HD 
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Exceptional Points – Basic Concepts 

Exceptional points (EPs): 

   Occur in the discrete spectrum of a finite Hamiltonian 

Formalism: Tosio Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 
Berlin (1980), pp. 62-66. 

Adiabatic encirlement of EP: eigenvalues will be rotated into one another 

   There exist N(N-1) EPs for an N-dimensional system 

   Eigenvalues share a common branch point in parameter space 

   ‘Defective’ points in parameter space at which at least two 
     eigenvalues coalesce 



EPs in the photodissociation spectrum of H2
+  

Lefebvre, et al numerically study EPs in the 
spectrum of an H2

+ ion exposed to laser light 

length gauge with dipole approximation is used, with
symbols E0 and !L defining, respectively, the amplitude
and frequency of the monochromatic laser light. The wave-
length is ! ¼ 2"c=!L. Since the Hamiltonian is time
periodic with period T ¼ 2"=!L, the light induced mo-
lecular dynamics can be most conveniently studied using
the formalism of the Floquet theory [17]. This essentially
means the use of an ansatz j!ðR; tÞi ¼ e$iEFt=@j"FðR; tÞi,
where EF is the so-called quasienergy. In our case
j"FðR; tÞi ¼ #gðR; tÞjgiþ#uðR; tÞjui. The Schrödinger
equation becomes now equivalent to a Floquet eigenvalue
problem

!
HðtÞ $ i@ @

@t

"
#gðR; tÞ
#uðR; tÞ

# $
¼ EF

#gðR; tÞ
#uðR; tÞ

# $
; (2)

where the time variable t is treated as an additional dy-
namical coordinate running through an interval ½0; T'. Note
that the quasienergy EF plays to some extent the same role
as an eigenenergy of a time-independent Hamiltonian. By
applying the Fourier expansion

#g;uðR; tÞ ¼
Xn¼þ1

n¼$1
ein!Lt’n

g;uðRÞ; (3)

one obtains from problem (2) an equivalent set of coupled
equations

½TR þ VgðRÞ þ n@!L $ EF'’n
gðRÞ

þ dðRÞðE0=2Þ½’nþ1
u ðRÞ þ ’n$1

u ðRÞ' ¼ 0 (4)

accompanied by similar equations constructed via an in-
terchange of subscripts g $ u. The above representation of
the solutions of the time-dependent Schrödinger equation
as a Floquet eigenvalue problem is physically insightful
since it enables one to interpret different coupled channels
(labeled by index n) in terms of the number of photons that
the molecule has absorbed or emitted [17]. The excited
state electronic potential VuðRÞ is purely repulsive, leading
thus to photodissociation in the presence of the laser. For
this reason, the system of coupled eigenvalue equations (4)
does not possess any bound state solutions as soon as E0 !
0. Resonances are characterized by outgoing boundary
conditions [1–3,18]. This is compatible only with quan-
tized complex eigenenergies identifiable as poles of the
scattering matrix. The real part ReðEFÞ of a given complex
Floquet eigenvalue EF is interpreted physically as the
energy of the resonance state, whereas #F ¼ $2 ImðEFÞ
determines the corresponding decay rate. Outgoing bound-
ary conditions imply that the resonance wave functions are
not square integrable. To overcome this difficulty, we shall
follow the well established approach of complex scaling
transformations [2,3] which forces the resonance wave
functions to decay exponentially as R ! 1. After the
complex scaling transformation is implemented, the so-
called self-overlap $ of a given resonance solution
"FðR; tÞ is evaluated as

$ ¼
Xn¼þ1

n¼$1

Z 1

0
dRf½’n

gðRÞ'2 þ ½’n
uðRÞ'2g: (5)

Expression (5) is used to study the self-orthogonality phe-
nomenon that occurs whenever two photodissociation
resonances coalesce. Importantly, no complex conjugates
of the Fourier components ’n

g;uðRÞ are taken here, in con-
sistency with the definition of the non-Hermitian c product
(see Refs. [2,4]). The self-orthogonality phenomenon can-
not be properly described using the standard Hermitian
definition of $ where the usual complex conjugates of
’n

g;uðRÞ would appear. The photodissociation resonances
of Hþ

2 were calculated previously [19,20]. We use the Hþ
2

potential energy curves and the transition dipole element
taken from the work of Bunkin and Tugov [21]. The
coupled eigenvalue equations (4) are solved on a grid using
a matching technique based on the Fox-Goodwin propa-
gator, with exterior complex scaling [19].
Figure 1 shows an outcome of our numerical calcula-

tions aimed at demonstrating the existence of coalescent
photoinduced resonances for specifically chosen wave-
lengths !EP and intensities IEP (’E2

0). Energies and rates
are evaluated as a function of intensity for various !’s until
a near coincidence of both energies and rates is obtained.
We have found that the resonance associated with the
field-free vibronic bound state v ¼ 8 coincides with that
of v ¼ 9 at !8–9

EP ¼ 442:26 nm and I8–9EP ¼ 0:3949(
1013 W=cm2. Another coalescence point corresponding
to v ¼ 9 and v ¼ 10 is detected at !9–10

EP ¼ 401:14 nm
and I9–10EP ¼ 0:5130( 1013 W=cm2. In both cases the tan-
gents to the curves of Fig. 1 at the exceptional points are
vertical (i.e., showing a cusp behavior at the EP [16]). We
have also checked the characteristic signature of the EP on
the wave functions. More precisely, the resonance wave
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FIG. 1 (color online). Left column: Near coincidence of two
resonance energies issued, respectively, from the field-free vibra-
tional states v ¼ 8 and v ¼ 9 of the X2$þ

g state of Hþ
2 for the

laser parameters !8–9
EP ¼ 442:26 nm and I8–9EP ¼ 0:3949(

1013 W=cm2. Right column: The same for the case of v ¼ 9
and v ¼ 10 and !9–10

EP ¼ 401:14 nm and I9–10EP ¼ 0:5130(
1013 W=cm2.
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Adiabatic variation of  
two system parameters: 

R. Lefebvre, O. Atabek, M. Šindelka, and N. Moiseyev 
Phys. Rev. Lett. 103, 123003 (2009). 

Encircling the EP we may 
populate the ν=9 state 
through the ν=8 state, etc. 



EPs: Experimental observation 
in the modes of a microwave cavity 

C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, 
and A. Richter, Phys. Rev. Lett. 86, 787 (2001). 
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coalesce into one which implies a defect of the underly-
ing Hilbert space. Even though this operator singularity
can be illustrated in a two level model we stress the uni-
versality of this mathematical feature in a general problem
of higher dimensions [6]. For Hermitian operators H0 and
H1 the EP can occur only at complex values of l. In other
words, the full problem H0 1 lH1 is no longer Hermitian
at the EP. To get access to and encircle an EP in an ex-
periment, an absorptive system must therefore be used. A
variety of possibilities to achieve this has been discussed
in [6]. Three major results have been reported when an EP
is encircled in the complex l plane [6].

(i) A complete loop in the parameter plane, spanned by
the real and imaginary parts of l, invokes half a loop in the
energy plane, spanned by the real and imaginary parts of
the eigenvalues [6,7]. The two energy levels Ek and Ek11
connected at the EP are interchanged when the loop in the
l plane is closing in on itself. Only a double loop in the
parameter plane yields a complete loop in the energy plane
for each level.

(ii) The two wave functions ck and ck11 are not just in-
terchanged as their corresponding energies but one of them
undergoes a phase change. In other words, a complete
loop in the l plane invokes !ck , ck11" ! !ck11, 2ck".
As an immediate consequence we conclude (i) the EP is
a fourth order branch point for the wave functions and
(ii) a different orientation of the loop in the l plane yields
a different phase behavior. In fact, encircling the EP a
second time completely with the same orientation we now
obtain !2ck , 2ck11" while the next complete loop yields
!2ck11, ck" and only the fourth loop restores fully the
original pair !ck , ck11". It follows that the opposite ori-
entation yields after the first completion what is obtained
after three loops in the former case.

(iii) The behavior of the two energy levels is distinctly
different when the path in the l plane is moving below
or above the EP. In the one case the two real parts of
the energy levels cross while their imaginary parts avoid
each other while the situation is reversed in the other case
(Fig. 1).

Encircling an EP in an experiment requires a system
with a Hamiltonian that has to resemble the one given
in Eq. (1) while all the external parameters have to be
adjustable with high precision and over a wide range of
values. Furthermore, the complex eigenvalues and the
eigenfunctions of the system have to be accessible to mea-
surements. Flat microwave cavities (billiards), set up as
an analog system (see, e.g., [8,9]), are an excellent tool
which meets all the requirements. With an appropriately
shaped cavity complex eigenvalues translate into resonance
frequencies (the real part) and resonance widths (the imag-
inary parts), while the eigenfunctions are given by the field
distributions inside the cavity. We used a copper cav-
ity with a height of d ! 5 mm and a geometry which
is sketched on the left side of Fig. 2. It consists of two
semicircular cavities of slightly different size which can be

FIG. 2. Sketch of the microwave cavity as seen from top (left)
and from the side (right). In the side view the indium wire which
is used to establish the electrical contact between the different
parts is enlarged.

coupled by adjusting the opening of a slit s between them.
A Teflon #er $ 2.1% semicircle is placed on one side of
the cavity which yields the second parameter d, namely,
the distance between the centers of the cavity and the semi-
circle. To assure a uniform electrical contact even at higher
frequencies between bottom, inset, and lid of the cavity,
indium wires with a diameter of 1 mm have been placed
close to the inner edge of the cavity as sketched in Fig. 2.
The cavity resonances were identified as described in [9],
while the field patterns were measured with a field pertur-
bation method suggested by Maier and Slater [10] which
has been successfully applied to microwave billiards be-
fore (see, e.g., [11–13]). For two isolated resonances of
the microwave cavity we can, in analogy to [6], set up a
simple 2 3 2 non-Hermitian matrix model

Hexp !
µ

df1 1 iG1 s
s f2 1 iG2

∂
, (4)

where df1 and f2 denote the frequencies and G1 and G2
denote the widths of the uncoupled resonances. This is
just a special form of Eq. (1) with f ! p&4 and v1 !
2v2 ! s. Exceptional points occur at a complex coupling

s̃EP ! 6

∑
G1 2 G2

2
1 i

µ
f2 2 df1

2

∂∏
. (5)

If the EP is to be encircled d will have to be adjusted in
a way that the imaginary part of the EP changes its sign,
since the actual observation of the system is restricted to
the real axis of the complex s̃ plane. In this simple model
s̃EP does not depend on the coupling s and encircling the
EP requires four steps: (i) Assuming in the first step that
s , G1 2 G2&2 and looking at the EP with Im!s̃EP" . 0
we first vary d so that the imaginary part of s̃EP will be less
than zero. During this process a frequency crossing and a
widths anticrossing should be observed [6]. (ii) In the sec-
ond step the coupling s is varied to s . G1 2 G2&2. This
changes the position of the system in the s̃ plane but leaves
the position of the EP fixed. (iii) Now d is set back to its
original value, i.e., Im!s̃EP" . 0. Because of the enhanced
coupling we will now observe a frequency anticrossing and
a widths crossing [6]. (iv) The last step is again moving the
position of the system in the s̃ plane to the initial reduced
coupling thus closing the path in the parameter plane. Af-
ter the EP is encircled the complex eigenvalues will be
interchanged, but they never cross each other during the

788
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FIG. 5. Development of the field distributions of the eighth (a)
and ninth (b) modes while encircling the EP. Throughout the
process the sign of the field distributions can be derived from
its predecessor.

is detected by tracing the real and imaginary parts (i.e., the
resonance frequencies and widths) of the eigenvalues and
the eigenvectors (i.e., the field distributions) on a closed
path around the EP. Along this path the complex eigen-
values are interchanged, but they never actually cross each
other. In contrast to this the eigenvectors are not just inter-
changed: We found that depending on the orientation of
the path one of them undergoes a sign change. By taking
into account all three observables (frequencies, widths, and
field patterns), the EP can be clearly distinguished from
other topological singularities such as DPs [2,17] and the
fascinating Riemann structure of the complex eigenvalue
planes can be directly observed.

We are particularly grateful to P. v. Brentano and
R. Hofferbert for many helpful ideas and remarks on the
setup of the experiment and H. A. Weidenmüller for dis-
cussing the results with us. This work has been supported

FIG. 6. Initial and final field distributions when the EP is en-
circled with different orientations leading to different geometric
phases being picked up by the modes.

by the DFG under Contract No. Ri 242/16-1 and by the
NRF of South Africa.
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Adiabatic variation of the 8th and 9th eigenmodes: 
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Prototype model: band spectrum 

Introduce Fourier series: 
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Prototype model: discrete spectrum 
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Final diagonalization may be performed.  Obtain the discrete 
spectrum from: 
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Prototype model: system discriminant I 
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Prototype model: system discriminant II 
Discriminant: 
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g =1/ 2  special case. 
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We will focus on real-valued case 
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g <1/ 2 for now. 



Discrete eigenvalues  
and adiabatic properties of the EPs 

Solve q(z) = 0 for exact solutions (quadratic): 
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Discrete spectrum: resonance state at EP 
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Discrete spectrum: effective k values 

�0.5 0.5
Εd

0

Π
4

3 Π
4

Π

Re k�
!"#$

�0.75 �0.25 0.25 0.75
Εd

�2.5

�2

�1.5

�1

�0.5

0.5
Im k�

Ε� Ε�
!!"

!#"

!#"

!!"

$%&"

kc

�0.5 0.5 Εd

�2

�1

1

2
Re z�



Discrete spectrum:  
eigenvalue expansion at EP 
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Comparison: superconducting nanowires  
driven with electric currents 

J. Rubinstein, P. Sternberg, and Q. Ma, Phys. Rev. Lett. 99, 167003 (2007). 

Bifurcation Diagram and Pattern Formation of Phase Slip Centers in 
Superconducting Wires Driven with Electric Currents 

and complex conjugacy (time reversal). The normal state
thus loses its stability when !> Real!!!I"". However,
since the spectral problem (3) is not self-adjoint, it is not
clear at all that the spectrum is real. On the other hand the
PT symmetry provides some useful information on the
spectrum. Spectral PT-symmetric problems have attracted
some interest in recent years following the numerical ob-
servation of Bender and Boettcher [5] that the spectrum of
certain PT-symmetric problems is real. While Ref. [5]
considered a problem on the entire line, we deal here
with a problem in a finite interval. When I # 0 the spec-
trum is of course real. The PT symmetry implies that if
[!; u!x"] is a spectral pair with complex !, then also [!$,
u$!%x"] is a spectral pair. Since the spectrum depends
smoothly on I as long as the eigenvalues remain separated
[6], a real eigenvalue cannot split spontaneously into a
complex pair. This implies that at least for small I all
eigenvalues are real. However, when the current I is large,
the lowest eigenvalues (in absolute value) are shown to
satisfy ! # O!iI";, namely, to leading order they are purely
imaginary. This implies that eigenvalues indeed collide as I
increases. Specifically we find that the first such collision
occurs when the first and second eigenvalues approach
each other and collide at a critical value Ico & 12:31.

At the collision point, the geometric multiplicity of the
eigenvalue is 1. To find the behavior of the spectrum near
Ico we set the current I to be I # Ico ' "a. Here " is a small
positive number, and we introduce a to determine through
its sign the direction in which we move from Ico. We then
consider an expansion of the form

 ! # #0 ' "1=2#1 ' "#2 ' . . . ;

u # u0 ' "1=2u1 ' "u2 ' . . . :
(4)

The nonanalytic nature of the expansion for ! is a conse-
quence of the Jordan form of the spectral problem at the
critical value I # Ico. The leading order term in (4) is
found to be #0 & 0:71, with an associated eigenfunction
u0 that we normalize by u0!0" # 1. The first order correc-
tion #1 is conveniently expressed through the auxiliary
function K!x" that solves

 Kxx ' ixIcoK '#0K # u0; K!(1" # 0: (5)

Writing u0 # Ur ' iUi, and defining a1 # 2
R
1
%1 xUrUidx

and b # R
1
%1Ku0dx, one obtains #2

1 # %aa1=b. A nu-
merical integration gives a1 & 0:29 and b & 0:12. Since
a1=b > 0, we see that when a < 0, i.e., when I is a little
smaller than Ico, there are two real solutions; these are the
first two real eigenvalues just before the collision.
However, for I beyond Ico, that is, for a > 0, the single
eigenvalue #0 splits into a pair of complex eigenvalues. It
can be further shown that #2 is a single real number; i.e., it
is the same for both splitting eigenvalues [7]. The analysis
above shows that the real part of the leading eigenvalue is
not an analytic function of the current at I # Ico. In fact, its
derivative blows up as Ico is approached from below. On

the other hand, the real part of the first eigenvalue (pair) is a
smooth function of I just above Ico. This analysis holds for
any later collision of real eigenvalues as well. It is in
agreement with the numerical calculation presented in
Fig. 1.

We computed the first few eigenvalues numerically as
they increase past special collision points. Increasing I
beyond Ico, the first two eigenvalues move as a complex
pair according to the PT symmetry. The real parts of the
first six eigenvalues as a function of I are plotted in Fig. 1.
We see there that respective pairs of eigenvalues collide at
successive critical values of I.

The normal state becomes unstable at that value of ! for
which !% Real!!" # 0. For I < Ico the first eigenvalue
!!I" is real. When the temperature is sufficiently low, i.e.,
when ! # !!I", the normal state loses stability. Proceeding
to high order terms in the bifurcation expansion it is found
that the bifurcation branch that emerges at ! # !1!I" #
!!I" is stable for I < Ik & 10:92. In this regime, i.e., when
I < Ik and !> !!I", the bifurcating solution converges to a
stationary solution. By ‘‘stationary’’ here we mean that
writing  # fei$, the gauge invariant quantities f!x; t",
q!x; t" # $x!x; t", and %!x; t" # $t!x; t" % ’!x; t" converge
to stationary functions f0!x", q0!x", %0!x". Once I crosses
the critical collision value Ico and the eigenvalue splits into
a conjugate complex pair, the phase transition temperature
is determined by the condition ! # Real!!!I"" # !1!I".
Thus, I > Ico a Hopf bifurcation occurs and the solution
to the full TDGL is periodic.

Consider now a current I > Ico. When ! is below !1!I",
the positive real part of the spectrum dominates, and the
normal state is stable. Increasing ! with I fixed we see that
when ! # !1!I" a Hopf bifurcation into a periodic solution
takes place as explained above. In addition to determining
the bifurcation curve ! # !!I", the spectral problem (3)
can also be used to compute the bifurcating branch, which
is always stable, in the periodic regime. To see this, fix a
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FIG. 1 (color online). The real parts of the first six eigenvalues
of the PT-symmetric spectral problem (3).
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and complex conjugacy (time reversal). The normal state
thus loses its stability when !> Real!!!I"". However,
since the spectral problem (3) is not self-adjoint, it is not
clear at all that the spectrum is real. On the other hand the
PT symmetry provides some useful information on the
spectrum. Spectral PT-symmetric problems have attracted
some interest in recent years following the numerical ob-
servation of Bender and Boettcher [5] that the spectrum of
certain PT-symmetric problems is real. While Ref. [5]
considered a problem on the entire line, we deal here
with a problem in a finite interval. When I # 0 the spec-
trum is of course real. The PT symmetry implies that if
[!; u!x"] is a spectral pair with complex !, then also [!$,
u$!%x"] is a spectral pair. Since the spectrum depends
smoothly on I as long as the eigenvalues remain separated
[6], a real eigenvalue cannot split spontaneously into a
complex pair. This implies that at least for small I all
eigenvalues are real. However, when the current I is large,
the lowest eigenvalues (in absolute value) are shown to
satisfy ! # O!iI";, namely, to leading order they are purely
imaginary. This implies that eigenvalues indeed collide as I
increases. Specifically we find that the first such collision
occurs when the first and second eigenvalues approach
each other and collide at a critical value Ico & 12:31.

At the collision point, the geometric multiplicity of the
eigenvalue is 1. To find the behavior of the spectrum near
Ico we set the current I to be I # Ico ' "a. Here " is a small
positive number, and we introduce a to determine through
its sign the direction in which we move from Ico. We then
consider an expansion of the form

 ! # #0 ' "1=2#1 ' "#2 ' . . . ;

u # u0 ' "1=2u1 ' "u2 ' . . . :
(4)

The nonanalytic nature of the expansion for ! is a conse-
quence of the Jordan form of the spectral problem at the
critical value I # Ico. The leading order term in (4) is
found to be #0 & 0:71, with an associated eigenfunction
u0 that we normalize by u0!0" # 1. The first order correc-
tion #1 is conveniently expressed through the auxiliary
function K!x" that solves

 Kxx ' ixIcoK '#0K # u0; K!(1" # 0: (5)

Writing u0 # Ur ' iUi, and defining a1 # 2
R
1
%1 xUrUidx

and b # R
1
%1Ku0dx, one obtains #2

1 # %aa1=b. A nu-
merical integration gives a1 & 0:29 and b & 0:12. Since
a1=b > 0, we see that when a < 0, i.e., when I is a little
smaller than Ico, there are two real solutions; these are the
first two real eigenvalues just before the collision.
However, for I beyond Ico, that is, for a > 0, the single
eigenvalue #0 splits into a pair of complex eigenvalues. It
can be further shown that #2 is a single real number; i.e., it
is the same for both splitting eigenvalues [7]. The analysis
above shows that the real part of the leading eigenvalue is
not an analytic function of the current at I # Ico. In fact, its
derivative blows up as Ico is approached from below. On

the other hand, the real part of the first eigenvalue (pair) is a
smooth function of I just above Ico. This analysis holds for
any later collision of real eigenvalues as well. It is in
agreement with the numerical calculation presented in
Fig. 1.

We computed the first few eigenvalues numerically as
they increase past special collision points. Increasing I
beyond Ico, the first two eigenvalues move as a complex
pair according to the PT symmetry. The real parts of the
first six eigenvalues as a function of I are plotted in Fig. 1.
We see there that respective pairs of eigenvalues collide at
successive critical values of I.

The normal state becomes unstable at that value of ! for
which !% Real!!" # 0. For I < Ico the first eigenvalue
!!I" is real. When the temperature is sufficiently low, i.e.,
when ! # !!I", the normal state loses stability. Proceeding
to high order terms in the bifurcation expansion it is found
that the bifurcation branch that emerges at ! # !1!I" #
!!I" is stable for I < Ik & 10:92. In this regime, i.e., when
I < Ik and !> !!I", the bifurcating solution converges to a
stationary solution. By ‘‘stationary’’ here we mean that
writing  # fei$, the gauge invariant quantities f!x; t",
q!x; t" # $x!x; t", and %!x; t" # $t!x; t" % ’!x; t" converge
to stationary functions f0!x", q0!x", %0!x". Once I crosses
the critical collision value Ico and the eigenvalue splits into
a conjugate complex pair, the phase transition temperature
is determined by the condition ! # Real!!!I"" # !1!I".
Thus, I > Ico a Hopf bifurcation occurs and the solution
to the full TDGL is periodic.

Consider now a current I > Ico. When ! is below !1!I",
the positive real part of the spectrum dominates, and the
normal state is stable. Increasing ! with I fixed we see that
when ! # !1!I" a Hopf bifurcation into a periodic solution
takes place as explained above. In addition to determining
the bifurcation curve ! # !!I", the spectral problem (3)
can also be used to compute the bifurcating branch, which
is always stable, in the periodic regime. To see this, fix a
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FIG. 1 (color online). The real parts of the first six eigenvalues
of the PT-symmetric spectral problem (3).
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complex conjugate 
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Generalization of discussion: 
Open quantum systems – Formalism 

€ 

z −ε
d

= Σ(z)

Generic Hamiltonian: 

€ 

H = H
D

+H
C

+H
DC

Specific case, single level discrete sector: 

€ 

H
D

= ε
d
d+d

€ 

H
DC

= gV

€ 

(system parameters :  ε
d
,g)

Finite level spectrum given by the roots of: 

From this equation we obtain the system discriminant: 

  

€ 

D(ε
d
,g) = f

1
(ε

d
,g) × f

2
(ε

d
,g) × × f

r
(ε

d
,g)
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f
i
(ε 

d
,g ) = 0  necessary and sufficient condition for an EP 
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d

= ε 
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Formalism continued:  
Cycle structure around an EP 

  

€ 

{z1(x), …,  zp−1(x),  zp (x)}, {zp+1(x),  …,  zp+q−1(x), zp+q (x)}, …

Eigenvalues organize into cycles in the vicinity of a given EP: 

Adiabatic revolution around exceptional point 

€ 

x = x 

  

€ 

{z1(x), …,  zp−1(x),  zp (x)} →  {z2(x),  …,  zp (x),  z1(x)}

For a given cycle, the center is the energy value where the p eigenvalues 
coalesce: 

  

€ 

z c =  z1(x = x ) =… = zp (x = x )



Formalism continued: Eigenvalue expansion 

We may expand the eigenvalues in the vicinity of the EP: 

  

€ 

z
h
(x) = z 

c
+ β

1
ω h (x − x )1/ p + β

2
ω 2h (x − x )2 / p +…

  

€ 

with ω = e2πi / p,  h = 0, …,  1− p

(Kato) 

  

€ 

z
h
(x) = z 

c
+ β

1
ω h ( f

j
(x))1/ p + β

2
ω 2h ( f

j
(x))2 / p +…

€ 

f
j
(x) are polynomials from the system discriminant 

Heuristic generalization: 

Tosio Kato, Perturbation Theory for Linear Operators, 
Springer-Verlag, Berlin (1980), pp. 62-66. 



General method to find EPs 
in open quantum systems 

€ 

From general dispersion  z −ε
d

= Σ(z)    (1)

Idea: take advantage that eigenvalue derivative diverges at the EP 

€ 

take derivative to obtain

€ 

dΣ(z
0
)

dz
0

=1− 1
∂z

0
/∂ε

d

      (2)
€ 

at the EP :

€ 

dΣ(z
0
)

dz
0 z0 =z c

=1      (3)

Use (3) to find the center     then plug this result in (1) to locate EP. 

€ 

z 
c

Expand (2) to obtain higher terms and use 

€ 

p =
1
2πi

∂
∂z
log d 1

z −H
d

Cz c

∫ dz



Motivation for p-value equation 

€ 

p =
1
2πi

∂
∂z
log d 1

z −H
d

Cz c

∫ dz

€ 

=
1
2πi

d
dz
[z −ε

d
−Ξ(z)]

z −ε
d
−Ξ(z)Cz c

∫ dz

€ 

z −ε
d
−Ξ(z) ~ (z − z 

c
)p

In the vicinity of the EP: 
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d
dz
[z −ε

d
−Ξ(z)]

z −ε
d
−Ξ(z)

~ p
z − z 

c

So we have 



Dynamical phase transition  
in open quantum systems 

C. Jung, M. Müller, and I. Rotter, Phys. Rev. E 60, 114 (1999). 

They study a line of resonant states coupled through a common 
decay channel 

states remain at E�0, one with further increasing, the other
one with decreasing � . The more resonance states the spec-
trum contains, the smaller is �c1, as one can see in Fig. 3�b�.
Here the imaginary parts �k /2 of the eigenvalues �k shown
in Fig. 3�a� are drawn as a function of the coupling strength
� . The collision point shifts to the critical point of the spec-
trum (�c1→�crit) if the number M of resonance states is
enlarged, in spite of the fact that their distance from one
another at �c1 is larger when M is larger. The two values of
�c1 corresponding to M�101 and M�301 are indicated by
vertical dashed lines. The values of �crit and �c2 are marked
by vertical solid lines. In the limit M→� , the two broad
poles appear at E→� . In this limit, �c1→�crit . At this point
of � , the poles jump to E�0.
Between ���c1 and the finite value ���c2, there exist

three resonance states at E�0: the two broader poles appear-
ing at �c1 and the original one, which is discriminated by the
external coupling by D. The collective mode is one of the
two resonance states arising from the phase transition at �
��c1. Its imaginary part increases with further increasing � .
The other broad pole decreases in � with increasing � . Its
collision with the discriminated resonance state at ���c2
shifts both states away from E�0 and the imaginary part of
both eigenvalues decreases. Contrary to the value of �c1,
which approaches �crit with M→� , the value of �c2 remains
almost constant as a function of M. For M→� , the value of
�c2 remains larger than �crit . As we will see below, it
mainly depends on D. The poles of the trapped states ap-

proach the values n�1/2 �with n�Z) if �→� .
Figures 4�a� and 4�b� show the graphs of �� coth(��)

�D for different D (D��0.5,0,0.5) and �/� for several
values of � as a function of � . The points of intersection are
the solutions of Eq. �49� derived under the assumption of an
infinite number of states.
In Fig. 4�a� the coupling parameter is set to ��0.1

��crit , and ��1/���crit , respectively. For the value �
��crit there exists only one point of intersection with each of
the curves of coth, lying at small values of � . Also the state
at E�0 has a comparably small width in the undercritical
regime of � and the value of � increases with increasing D.
In the parameter range ���crit, no broad mode is separated
from the other ones.
At the critical point ���crit , where the phase transition

takes place, the linear curve �/� is tangential to the
�� coth(��)�D for D�0 and is parallel to this function for
D��0.5,0.5 �lower and upper thick full line, respectively�.
So each of these curves has a point of intersection with �/�
at ��� . For the case D��0.5, the intersection at ���
contains two solutions for the two broad modes, arising at
the borders �at E���) of the spectrum and colliding at E
�0. Additionally, there is another intersection with �/� at a
small value of � which arises from the discriminated state at
E0�0.
In Fig. 4�b�, we see the same curves �� coth(��)�D as

in Fig. 4�a� together with �/� for different values of �
��crit : ���c2 , ���c2, and ���c2. In all cases, the
curves have intersections at ��� . This means that for all

FIG. 3. �a� Eigenvalues �k�Ek�i/2�k in the complex plane for
a small energy range around the center. Ek�k � k and vk�1 � k
but v0�0.5. N�50 �rhombi�, 150 �crosses�. �b� �k as a function of
(�). Ek�k � k and vk�1 � k but v0�0.5. N�50,150.

FIG. 4. Numerical illustration of Eq. �49�. �� coth(��)�D
�left ordinate scale� for D��0.5,0,0.5 �full lines� and �/� �right
ordinate scale� for different � . �a� for ��0.1 �dashed line�, 1/�
�solid thin line�. �b� for �crit����c2 �solid thin line�, ���c2
�dashed line�, ���c2 �dash-dotted line�. For details, see text.

122 PRE 60C. JUNG, M. MÜLLER, AND I. ROTTER
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parameterized through the 
common coupling parameter α 

Small α: resonances have a 
similar shape/magnitude 

Above	  αcrit:	  one	  resonance	  ‘takes	  off,’	  
aligns	  with	  decay	  channel;	  system	  
re-‐organiza?on	  

  Interprets decay rate as the order parameter in this dynamical phase transition 



QPT analogy for the real-valued EPs 

For our case, we propose: Order parameter 
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Γ
res
~ λ1/ 2

With  
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λ = f
2
(ε

d
,g) = ε 2 −ε 
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2

Correlations through the resonant state: 
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∫ ~ e log 1−2g 2 xeiϕ res x

With  
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ϕ
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= arctan λ1/ 2 /ε
d( ) ‘channel correlation’ 
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ξ ~ λ−1/ 2

Scaling: 

€ 

Γ
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~ ξ−z ~ λ1/ 2

€ 

z =1Dynamical exponent: 

(time dimension) 



Conclusions 
   Generalization of Kato’s expression for eigenvalue expansion 
     in the vicinity of EPs 

   General technique to determine the position of EPs and the 
     eigenvalue expansion in open quantum systems 

   We applied this to our prototype model – semi-infinite chain with 
     endpoint impurity 

   Transition from real-valued EPs to complex EPs: 
   Fano resonance to avoided level crossing 
   Behavior of system across critical value gcr 

    QPT analogy at real-valued EPs: 
   Decay rate as order parameter 
   Channel correlations and dynamical critical exponent 

    Complex free energy – fractional powers as critical exponents 


