Non-Dirac-hermitian Supersymmetric Quantum Systems: A Deconstruction

Pijush K. Ghosh Department of Physics VISVA-BHARATI Santiniketan, INDIA

June 15-25, 2011 PHHQPX11, MPI-PKS, Dresden, Germany

References

- arXiv:1105.2495
- JPA 44 (2011) 215307 [arXiv:1101.2120]
- JPA 43 (2010) 125203 [arXiv:0908.1321]
- JPA 38 (2005) 7313 [quant-ph/0501087]

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Plan of the seminar

- The role of metric
- Methods to find the metric
- Outline of a deconstruction
- Example: non-SUSY model
- Clifford algebra: A non-Dirac hermitian realization
- Non-Dirac hermitian supersymmetric theory
 - Jaynes-Cummings Hamiltonian
 - Many-particle systems
 - Pseudo-hermitian Superconformal Symmetry
- Summary of Results

The role of metric

- A consistent quantum description of a class of non-dissipative non-Dirac-hermitian Hamiltonian is admissible
 - Entirely real spectra
 - Unitarity
 - Completeness of eigenstates
- The class is characterized by an unbroken combined \mathcal{PT} symmetry or pseudo-hermiticity of the Hamiltonian
- A modified norm and/or a positive-definite metric in the Hilbert space is required for consistency and completeness
- Explicit form of the metric or knowledge of the modified norm is not known for majority of the models

Description of this class of non-dissipative non-Dirac-hermitian Hamiltonian is thus incomplete

Methods to find the metric η_+

• Spectral Decomposition

- Prior knowledge of a complete set of states
- Involves non-trivial summation/integration
- Very often, approximations are made

• Perturbation Theory

- The description is not exact
- Effective hermitian Hamiltonian or metric is known only up to a order of the perturbation

• Moyal Product

- Very limited applications
- The description is not exact

• Group Theory

Limited applications to quantum systems with dynamical symmetry

Consequently, not many non-Dirac-hermitian quantum system with EXACT metric is known

Systems with a pre-determined metric

What about constructing Pseudo-hermitian quantum system with a pre-determined metric?

Motivations:

- Pseudo-hermitian deformation of known Dirachermitian quantum systems
 - Stable bound states for enlarged parameter space
 - Systematic study of allowed metric for a given system
 - Isospectral Hamiltonian
- Examples of more exactly solved non-dissipative non-Dirac-hermitian quantum systems with a complete description
 - Check validity of approximate and/or numerical methods
 - Check other relevant ideas to the field

A Method for Deconstruction

• Consider a Hilbert space $\mathcal{H}_{\eta^b_+}$ that is endowed with a Positive-definite metric η^b_+

Example: $\eta^b_+ := e^{-\delta L_3}, \ L_3 = x_1 p_2 - x_2 p_1, \ \delta \in R$

• Find a realization of the basic CCR in terms of operators which are hermitian in $\mathcal{H}_{\eta^b_{\perp}}$

Example:

$$\begin{aligned} X_1 &= x_1 \, \cosh w + i x_2 \, \sinh w, \\ X_2 &= -i x_1 \, \sinh w + x_2 \, \cosh w, \quad X_3 = x_3 \\ P_1 &= p_1 \, \cosh w + i p_2 \, \sinh w, \\ P_2 &= -i p_1 \, \sinh w + p_2 \, \cosh w, \quad P_3 = p_3 \\ w &\equiv \delta + i \xi, \quad \xi \in R \end{aligned}$$

- Hamiltonian constructed out of X_i, P_i 's are hermitian in $H_{\eta^b_+}$, but, not necessarily in \mathcal{H}_D
- Several examples with non-central potentials are allowed

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

An Example

A non-Dirac-hermitian Hamiltonian:

$$H = \frac{p^2}{2m} - \frac{e^2}{r} + e\mathcal{E}X_1$$

= $\frac{p^2}{2m} - \frac{e^2}{r} + e\mathcal{E}(x_1 \cosh w + i x_2 \sinh w), \quad \mathcal{E} \in \mathbb{R}$

Each operator B_i in \mathcal{H}_D is related to the corresponding operator A_i in $\mathcal{H}_{\eta^b_+}$:

$$A_i = (\rho^b)^{-1} B_i \rho^b, \ \ \rho^b := \sqrt{\eta^b_+}$$

Example : $X = (\rho^b)^{-1} x \rho^b$, $H = (\rho^b)^{-1} h \rho^b$

$$h = \frac{p^2}{2m} - \frac{e^2}{r} + e\mathcal{E}x_1$$

Eigenstates & eigenvalues:

$$\psi_H = (\rho^b)^{-1} \psi_h, \quad \langle \langle A \rangle \rangle_{\eta^b_+} = \langle B \rangle_{\mathcal{H}_D}$$

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Example: Integrable Spin-chain models A metric

$$\zeta_{+} := \prod_{i=1}^{N} e^{-2\delta_{i}\mathcal{S}_{i}^{z}}$$

Pseudo-hermitian spin-chain model:

$$H_A = \sum_{i=1}^{N-1} \left[\Gamma \left(e^{w_i - w_{i+1}} \mathcal{S}_i^+ \mathcal{S}_{i+1}^- + e^{-(w_i - w_{i+1})} \mathcal{S}_i^- \mathcal{S}_{i+1}^+ \right) \right. \\ \left. + \Delta \mathcal{S}_i^z \mathcal{S}_{i+1}^z + \left(A_i coshw_i - iB_i sinhw_i \right) \mathcal{S}_i^x \right. \\ \left. + \left(B_i coshw_i + iA_i sinhw_i \right) \mathcal{S}_i^y + C_i \mathcal{S}_i^z \right]$$

Isospectral partner:

$$h = \sum_{i=1}^{N-1} \left[\Gamma \left(\mathcal{S}_i^x \mathcal{S}_{i+1}^x + \mathcal{S}_i^y \mathcal{S}_{i+1}^y \right) + \Delta \mathcal{S}_i^z \mathcal{S}_{i+1}^z + A_i \mathcal{S}_i^x + B_i \mathcal{S}_i^y + C_i \mathcal{S}_i^z \right]$$

- Several integrable limits [T Deguchi and PKG, JPA 42, 475208(2009)]
- Pseudo-hermitian deformations of Dicke model, quadratic form of boson(fermion) operators, Calogero-type models have been studied

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Clifford Algebra(CA) and a metric

Real Clifford Algebra:

$$\{\xi_p, \xi_q\} = 2\delta_{pq}, \quad p, q = 1, 2, \dots, 2N$$

Generators of O(2N) group:

$$J_{pq} := \frac{i}{4} \left[\xi_p, \xi_q \right]$$

A positive-definite metric with N real parameters γ_i :

$$\eta_{+}^{f} := \prod_{i=1}^{N} e^{2\gamma_{i}J_{iN+i}-\gamma_{i}}, \quad \rho_{f} := \sqrt{\eta_{+}^{f}}$$

• Positivity may be shown by expressing ξ_p in terms of fermionic variables

$$\psi_i := \frac{1}{2} \left(\xi_i - i\xi_{N+i} \right), \quad \psi_i^{\dagger} := \frac{1}{2} \left(\xi_i + i\xi_{N+i} \right)$$

• A more general metric with N(2N-1) number of real parameters is admissible

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

CA : A pseudo-hermitian realization

General Prescription:

$$\Gamma_p := (\rho^f)^{-1} \xi_p \rho^f$$

A particular realization:

 $\Gamma_{i} = \xi_{i} \cosh \gamma_{i} + i\xi_{N+i} \sinh \gamma_{i},$ $\Gamma_{N+i} = -i\xi_{i} \sinh \gamma_{i} + \xi_{N+i} \cosh \gamma_{i}$

- Γ_p 's are non-Dirac-hermitian and admit entirely real eigenvalues. Γ_p 's are hermitian in $\mathcal{H}_{\eta_1^f}$
- Known matrix representations of ξ_p lead to matrix representations of Γ_p
- Γ_p 's may be used to construct $2^N \times 2^N$ pseudohermitian and pseudo-unitary matrices depending on $2^{2N} + N$ real parameters

Complexification of real CA

Fermionic operators:

$$\Psi_i := \frac{1}{2} \left(\Gamma_i - i \Gamma_{N+i} \right) = e^{-\gamma_i} \psi_i$$
$$\Psi_i^{\dagger} := \frac{1}{2} \left(\Gamma_i + i \Gamma_{N+i} \right) = e^{\gamma_i} \psi_i^{\dagger}$$

The algebra:

$$\{\Psi_i, \Psi_j\} = 0 = \{\Psi_i^{\dagger}, \Psi_j^{\dagger}\}, \ \{\Psi_i, \Psi_j^{\dagger}\} = \delta_{ij}$$

- Ψ_i 's may be interpreted as 'fermionic operators' ψ_i with purely imaginary gauge coupling
- Fock space representation of the states are identical for ψ_i, ψ_i^{\dagger} and Ψ_i, Ψ_i^{\dagger}
- Eigenstates of the total fermion number operators in \mathcal{H}_D and $\mathcal{H}_{\eta^f_+}$ differ by a phase:

$$|f_1,\ldots,f_N\rangle_{\mathcal{H}_{\eta^f_+}} = \prod_{k=1}^N e^{\gamma_k f_k} |f_1,\ldots,f_N\rangle_{\mathcal{H}_D}$$

 $f_i = 0, 1 \forall i$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Supersymmetry: A brief review

Superalgebra:

$$H = \{Q, Q^{\dagger}\}, \quad Q^2 = 0 = Q^{\dagger^2},$$

 $[H, Q] = 0 = [H, Q^{\dagger}]$

By construction,

- H is hermitian \implies real eigenvalues E_n
- H is semi-positive definite $\Longrightarrow E_n \ge 0$

A particular realization:

$$Q = \sigma_{+}a, \quad Q^{\dagger} = \sigma_{-}a^{\dagger}, \quad \sigma_{\pm} := \sigma_{1} \pm i\sigma_{2}$$
$$a = p - i\frac{\partial W}{\partial x}, \quad a^{\dagger} = p + i\frac{\partial W}{\partial x},$$

 $W \equiv W(x)$ superpotential

$\sigma_{1,2,3}$ are Pauli Matrices

Exact solvability for Shape Invariant potentials

[–] Typeset by $\mathsf{FoilT}_{\!E\!}\mathrm{X}$ –

SUSY & JC

Superoscillators

$$W = \frac{1}{2}x^2 \Rightarrow [a, a^{\dagger}] = 1$$

The Jaynes-Cummings Hamiltonian:

$$H = a^{\dagger}a + \frac{1}{2}[a, a^{\dagger}](\sigma_{3} + 1)$$

+ $\lambda \left(e^{i\theta}\sigma_{+}a + e^{-i\theta}\sigma_{-}a^{\dagger} \right)$
= $\{Q, Q^{\dagger}\} + \lambda \left(e^{i\theta}Q + e^{-i\theta}Q^{\dagger} \right)$
 $\lambda \in R, \quad 0 \le \theta \le 2\pi$

- Exactly solvable
- SUSY can be realized for the Dicke model also
- Relevance of Dicke model: Optics, QPT, RMT, Chaos, spintronics

A non-Dirac-hermitian JC

• Consider Clifford Algebra with N = 1:

 $\xi_1 := \sigma_1, \xi_2 := \sigma_2, \quad \gamma_5 := \sigma_3$

• Replace $\xi_{1,2} \to \Gamma_{1,2}, \ \sigma_{\pm} \to e^{\pm \gamma} \sigma_{\pm}$

The non-Dirac-hermitian Hamiltonian

$$H = a^{\dagger}a + \frac{1}{2}[a, a^{\dagger}](\sigma_3 + 1)$$

+ $\lambda \left(e^{\gamma + i\theta}\sigma_+ a + e^{-(\gamma + i\theta)}\sigma_- a^{\dagger} \right)$

- Entirely real spectra, unitarity, metric $\eta_+:=I\otimes e^{-\gamma\sigma_3}$
- For Dicke model, non-Dirac-hermitian deformations involving a, a^{\dagger} produces more general examples
- QPT[Deguchi and PKG, PRE80, 021107(2009)], RMT[T. Deguchi, PKG and K. Kudo, PRE80, 026213(2009)]

Pseudo-hermitian Supersymmetry

The metric

$$\eta_+ := \eta^b_+ \otimes \eta^f_+$$

- Use Γ_p or Ψ_i, Ψ_i^{\dagger} instead of $\xi_p, \psi_i, \psi_i^{\dagger}$
- Use X_i, P_i instead of x_i, p_i

SUSY Hamiltonian

$$\tilde{H} = \frac{1}{2} \sum_{i=1}^{N} \left(p_i^2 + W_i^2 - W_{ii} \right) + \sum_{i,j=1}^{N} e^{\gamma_i - \gamma_j} W_{ij} \psi_i^{\dagger} \psi_j$$

 $W \equiv W(X)$ is superpotential, $W_i = \frac{\partial W}{\partial X_i}$ etc.

- \tilde{H} is not hermitian in the sense of Dirac: $\tilde{H}^{\dagger} \neq \tilde{H}$
- \tilde{H} is pseudo-hermitian: $\tilde{H}^{\dagger} = \eta_{+}\tilde{H}\eta_{+}^{-1}$
- \tilde{H} is isospectral with a Dirac-hermitian H:

$$H = \rho \tilde{H} \rho^{-1}, \quad \rho := \sqrt{\eta_+}$$

– Typeset by $\mathsf{FoilT}_{\!E\!} X$ –

Pseudo-hermitian Superconformal Symmetry

Choice of the superpotential:

$$W = -\lambda \ lnr, \ r = \left(\sum_{i=1}^{N} x_i^2\right)^{\frac{1}{2}}$$

leads to a pseudo-hermitian superconformal Hamiltonian.

- \bullet Pseudo-hermitian realization of OSp(2|2) superalgebra
- Ground state is not even plane-wave normalizable. Neither in \mathcal{H}_D nor in \mathcal{H}_{η_+}
- A compact operator constructed out of the pseudo-hermitian generators of O(2,1) bosonic sub-algebra of OSp(2|2) can be used to study the unitary time-evolution of the system
- Extended SU(1,1|2) superconformal symmetry with pseudo-hermitian generators for ${\cal N}=2$

Summary

• Description of pseudo-hermitian quantum systems is incomplete without the knowledge of the positive-definite metric η_+ in the Hilbert space.

expectation values/correlation functions

 \times

- Finding η_+ is a highly non-trivial task for systems with infinite dimensional Hilbert space.
- A method to construct pseudo-hermitian quantum systems with a pre-determined η_+ has been described
 - 1. Choose η_+ and introduce \mathcal{H}_{η_+} with $\langle \langle \cdot | \cdot \rangle \rangle_{\eta_+}$
 - 2. Find a realization of the operators which are non-Dirac-hermitian, but, are hermitian in \mathcal{H}_{η_+}
 - 3. Construct diagonalizable operators in \mathcal{H}_{η_+}
- Method is applicable to non-relativistic, relativistic and supersymmetric quantum systems
- Pseudo-hermitian quantum systems thus constructed are necessarily isospectral with Dirachermitian systems

- Examples include pseudo-hermitian deformations of spin-chain models, Dicke model, quadratic form of N boson(fermi) operators, super-conformal quantum systems, Calogero-type models etc.
- These models may serve as prototype examples for testing different ideas related to the subjects, including validity of any perturbative and/or numerical computation.
- Experimental realizations of some of these systems are desirable

GRAFFITI

Unwritten first law of Physics:

Anything that is not forbidden is compulsory

THANK YOU

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –