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1. PT -symmetry and Optics

Start with scalar Helmholtz equation
(

∂2

∂z2
+

∂2

∂z2
+ k2

)

E(x, z) = 0

Thinking of a medium with n = n0(1 + v(x)) , where v ≪ 1 .

Write E = eik0zψ(x, z) . Eqn becomes
(

∂2

∂z2
+2ik0

∂

∂z
+

∂2

∂x2
+ (k2 − k20)

)

ψ = 0

Paraxial approximation:

Neglect first term, assuming that ∂2ψ/∂z2 ≪ ∂2ψ/∂x2

Also k2 − k20 ≈ 2k20v
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So get analogue Schrödinger eqn

i
∂ψ

∂z
+

1

2k

∂2ψ

∂x2
+ k v(x)ψ = 0

with z playing role of t . Excess refractive index n0v(x) can be

complex, and can be made PT symmetric.

Such optical systems have all kinds of interesting properties†.

†R. El-Ganainy et al., Optics Letters 32, 2632 (2007).
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The Sinusoidal Potential

Consider Schrödinger eqn

i
∂ψ

∂z
= −

(

∂2

∂x2
+ V (x)

)

ψ,

with V = V0(cos(2πx/a) + iλ sin(2πx/a))

Look for “energy” eigenfns of form ψ(x, z) ∝ e−iβz . Eigenfunc-

tions are Bloch functions with periodicity condition

ψk(x+ a) = eikaψk(x)

In first instance k = k(β) , which have to invert to get spectrum

β = β(k)
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2. Spectrum

Turns out that spectrum is completely real (PT -symmetry un-

broken) for λ ≤ 1 , and becomes partly complex for λ > 1.

Can be understood in terms of equivalent Hermitian Hamilto-

nian h , induced by similarity transformation

h = e−
1
2QH e

1
2Q

In general Q very difficult to find, but in this case

Q = θp̂ ≡ −iθd/dx

All it does† is shift x to x+ 1
2iθ .

†C. M. Bender, H. F. Jones and R. J. Rivers
Phys. Lett. B 625, 333 (2005)
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(i) λ < 1

H = p2 − V0(cos 2x+ iλ sin 2x)

(a = π ) can be converted into the Hermitian Hamiltonian

h = p2 − V0
√
(1− λ2) cos 2x

by the complex shift x → x+ 1
2iθ , where λ = tanh θ , provided

that λ < 1 .

Then Schrödinger eqn for ψ(x, z) becomes the Mathieu eqn for

ϕ(x, z) = ψ(x+ 1
2iθ) :

ϕ′′ + (a− 2q cos 2x)ϕ = 0,

with q = −√
(1− λ2) and a = β.
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Spectrum can actually be found by use of built-in Mathematica

functions MathieuA and MathieuB, and looks like the following

(V0 = 2 , λ = 0.9 ):
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(ii) λ > 1

In this case, analogue Schrödinger equation for h is

ϕ′′ + (a+ iV0
√
(λ2 − 1) sin 2x)ϕ = 0,

No longer Hermitian, and has some complex eigenvalues† .

That means exponential growth/decay in z .

By shift x→ x−π/2 , this again becomes the Mathieu equation,

but with q pure imaginary.

The functions MathieuA and MathieuB are still defined in Math-

ematica and can again be used to map out the band structure:

†All complex above V0 ≈ 0.888437
N. Midya, B. Roy and R. Choudhury, Phys. Lett. A 374 (2010) 2605
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Band structure (real part) for λ = 1.4 in reduced zone scheme.
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(iii) λ = 1

In this case we just have

h = p2

So spectrum is just β = k2 .

However, similarity transformation is now singular since θ → ∞ ,

so can’t be used to transform wave-functions.

This case needs to be treated separately.
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3. Dynamics for λ < 1

Can generate dynamics (development in z ) by method of sta-

tionary states [and exploiting similarity transformation† between

ψ and ϕ ]:

- Expand initial WF ψ(x, z = 0) as a superposn of orthonormal-

ized “energy” eigenfns ψkr(x) :

ψ(x, z = 0) =
∑

r
crψkr(x)

- with

cr =

∫

ψ∗
−kr(−x)ψ(x, z = 0)dx
∫

ψ∗
−kr(−x)ψkr(x)dx

†HFJ: arXiv:1009.5784
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- and then

ψ(x, z) =
∑

r
crψkr(x)e

−iβ(kr)z

Take a Gaussian wave-packet ψ(x,0) = e−(x/w)2 . Then intensity

pattern† is

†R. El-Ganainy et al.
Optics Letters 32, 2632 (2007)
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Alternatively, with input ψ(x,0) = e−(x/w)2+ik0x get†

x

z

Longhi4a,  V0=0.2, w=80, q0=−1
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†S. Longhi
Phys. Rev. A 81, 022102 (2010)
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4. Special Case λ = 1†

Already mentioned that can’t use similarity transformation to h

∵ θ → ∞ .

But can still use method of stationary states.

Analogue Schrödinger eqn is

−d
2ψ

dx2
− V0 exp(2iπx/a)ψ = βψ.

†E-M Graefe & HFJ
arXiv:1104.2838, → Phys. Rev. A

15



With change of variable y = y0 exp(iπx/a) , where y0 = (a/π)
√
V0 ,

this becomes the modified Bessel equation

y2
d2ψ

dy2
+ y

dψ

dy
− (y2 + q2)ψ = 0,

with q2 = β(a/π)2 . Spectrum is free spectrum. Away from BZ

boundaries q ∈ Z, Bloch wave-functions are precisely

ψk(x) = Iq(y)

Makes life easier if we choose a = π .

Then k = q and y =
√
V0e

ix .
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(i) Jordan associated functions

For k not an integer Ik(y) and I−k(y) are linearly independent.

But when k = n we have I−n(y) = In(y) .

i.e. ∃ only one eigenfunction for β = n2 . So eigenfunctions do

not form a complete set.

Spectral singularity, exceptional point, Jordan block.
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Simple matrix example:

M =

(

λ 1
0 λ

)

has only one eigenvalue λ and one eigenvector u = (1,0)

To complete basis, need additional vector v = (0,1) , which is a
soln of the generalized eigenvalue eqn

(M − λ)v = u

In general eigenvectors are orthogonal in sense

(ũL)1(uR)2 = 0

for λ1 6= λ2

At the special point u is self-orthogonal, but (ũL)(vR) = 1 .
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Essentially same true when M is linear diff l operator H .

Eigenfns orthogonal w.r. to PT metric
∫

dxψ−k(x)ψk′(x) = σ(k)δkk′

Here

σ(k) ≡
∫

dxψ−k(x)ψk(x)

is not positive definite, but alternates from band to band. Hence

in this degenerate case it has to vanish at BZ boundaries.

In fact it turns out that
∫

dxψ−k(x)ψk(x) = a sinc(ka)
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Jordan associated function ϕn(x) ≡ χn(y) defined as derivative

of ψn w.r. to E , i.e.

ϕn =
1

2k

dψn

dk

∣

∣

∣

∣

k=n

and satisfies “generalized eigenvalue equation”

(H −En)ϕn = ψn

χn(y) undefined up to multiples of In(y) and Kn(y) , and must

satisfy Bloch periodicity.

Derivative defn gives really simple formulae for ϕn in terms of

Im(y) .

In particular χ1(y) = −I0(y)/(2y) , which automatically has cor-

rect periodicity
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Time-dependence for Jordan Block

Back to matrix example

If, at t = 0 ,

w = au+ bv

then at a later time t

w = e−iHt(au+ bv)

Now (H − λ)u = 0 ⇒ e−iHtu = e−iλtu

whereas (H − λ)v = u ⇒
22



e−iHtv = e−iλte−i(H−λ)tv

= e−iλt [1− i(H − λ)t+ . . . ] v

= e−iλt(v−itu)

So generically, Jordan block ⇒ linear t-dependence.

Expect same in our case, where H is a differential operator.

BUT, it turns out that this is not the case, and that the linear

growth is saturated†

†S. Longhi, Phys. Rev. A 81, 022102 (2010).
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(ii) Saturation
(

g(x) = e−(x/w)2+ik0x
)
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(a) |ψ(x, z)| as a fn of x, z (b) Max. value (red line) of |ψ(x, z)| as a fn of z.

- Blue dashed-dotted line: Jordan block contribns only.

- Green dashed line: other contribns only.

Parameters are: V0 = 2, w = 6π and k0 = −1.
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- How can this possibly be??

- How can an explicit z dependence be compensated by other

(oscillatory) contributions?

- Answer is that

(a) Other contributions “know” about Jordan term

(b) Cancellation can only occur mathematically for limited range

of z

- But that’s OK because lattice is finite in x -direction

(c) Can show cancellation explicitly

25



(a) - other contributions “know” about Jordan term

ψ(x,0) ≡ g(x) is expanded as

ψ(x,0) = c0ψ0(x) +
∑

k 6=n
ckψk(x) +

∑

n> 0

[αnIn(y) + βnχn(y)]

Then ψ(x, z) is given by

ψ(x, z) = c0ψ0(x) +
∑

k 6=n
ckψk(x)e

−ik2z

+
∑

n> 0

[(αn − izβn)In(y) + βnχn(y)]e
−in2z
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Now ck is given by

ck =

∫ π
0 dxψ−k(x)Gk(x)

2N
∫ π
0 dxψ−k(x)ψk(x)

,

and βn by

βn =

∫ π
0 dxIn(y)Gn(x)

2N
∫ π
0 dxIn(y)χn(y)

.

where

Gk(x) ≡
N−1
∑

m=−N
e−iπmkg(x+mπ).
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Numerator of βn is a continuation of that of ck

Denominator of ck would vanish at k = n , and denominator of

βn is ∝ its derivative in k

Moreover, numerator ĉk of ck is highly peaked around k = 1 .

Namely

ĉk ∝ e−ǫ
2w2/4 , where ǫ = k − 1

while denominator nk ∝ ǫ
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(b) - cancellation can only occur mathematically for limited range

of z

So total contribution from neighbourhood of k = 1 and k = −1

is

const× I1(y)e
−iz



z+
1

2

∑

r=1

(

2

ǫr

)

sin(2ǫrz)e
−iǫ2r (z+w2/4)





where ǫr = r/N

Turns out that this is flat for a very long way:
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This is for box |x| ≤ Nπ , where N = 40
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Hint comes from function z+ sin(2z)/2 :
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But previous function is really flat.
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(c) - can show cancellation explicitly

Can understand the extreme flatness of the plateau in terms of

Jacobi ϑ3 functions. Essential function is

j(z) ≡ z+
∞
∑

r=1

(

1

ǫr

)

sin(2ǫrz)e
−ǫ2r/(w2/4+iz)

≈ z+
∞
∑

r=1

(

1

ǫr

)

sin(2ǫrz)e
−4ǫ2r/w

2

for the values of z we are considering.
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Not itself a ϑ3 function, but j′(z) is:

j′(z) ≈ 1+ 2
∞
∑

r=1

cos(2ǫrz)e
−ǫ2rw2/4

= 1+ 2
∞
∑

r=1

cos(2rz/N)e−r
2w2/(4N2)

= ϑ3

(

z

N
, e−w

2/(4N2)
)

Behaviour of ϑ3 not obvious, ∵ ↑= O(1) for w ≪ 2N .

However, can use alternative notation ϑ(z, q) = ϑ3(z|τ) , where

q = eiπτ , and apply Jacobi’s imaginary transformation:

ϑ3(z|τ) = (−iτ)−
1
2e−iτ

′z2/(πτ ′)ϑ3(zτ
′|τ ′),

where τ ′ = −1/τ .
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This converts j′(z) to

j′(z) = 2
√
π
N

w
e−4z2/w2

ϑ3

(

4πiN

w2
z, e−4π2N2/w2

)

Now second argument of ϑ3 is small, so for reasonable z can

approximate ϑ3 by 1 .

Then behaviour dominated by preceding Gaussian e−4z2/w2
, which

rapidly ↓ , corresponding to plateau in j(z)
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Gaussian eventually overwhelmed by the cosh terms occurring in

expansion of ϑ3.

- Must be so, ∵ ϑ3 periodic in z .

20 40 60 80 100 120
z

2

4

6

j¢HzL

j′(z) from previous slide
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6. Conclusions

- Showed how to exploit similarity transformation for unbroken

PT case λ < 1

- Showed how to use method of stationary states for PT -

breaking threshold λ = 1

- In this case elucidated unexpected phenomenon of saturation

- Optics very fertile ground for exploitation of PT symmetry.
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- Interesting and useful properties

- Can exploit possibility of switching from broken to unbro-

ken phase

- Interesting to consider materials where n varies with z as

well†

†Lin et al.
PRL 106, 213901 (2011)
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