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1. PT-symmetry and Optics

Start with scalar Helmholtz equation
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Thinking of a medium with n = ng(1 +v(z)), where v < 1.

Write E = etk0%y(z,2) . Eq" becomes
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Paraxial approximation:

Neglect first term, assuming that 824y /92z2 < 8% /dx2
Also k? — ki ~ 2k3v



So get analogue Schrodinger eq"
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with z playing role of ¢. Excess refractive index ngv(xz) can be

complex, and can be made PT symmetric.

+ kv(x)y =0

Such optical systems have all kinds of interesting propertiesT.

fR. El-Ganainy et al., Optics Letters 32, 2632 (2007).



T he Sinusoidal Potential

Consider Schrodinger eq"
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with V = Vy(cos(2nz/a) + iAsin(2rx/a))

Look for “energy” eigenf"s of form ¥ (z,z) < e~ % . Eigenfunc-
tions are Bloch functions with periodicity condition

bz + a) = ey (x)

In first instance k£ = k(3), which have to invert to get spectrum




2. Spectrum

Turns out that spectrum is completely real (PT-symmetry un-
broken) for A < 1, and becomes partly complex for A > 1.

Can be understood in terms of equivalent Hermitian Hamilto-
nian h, induced by similarity transformation

h = e_%QH G%Q
In general Q very difficult to find, but in this case
Q = 0p = —if6d/dx
All it doesT is shift z to x + 2i6 .

JfC. M. Bender, H. F. Jones and R. J. Rivers
Phys. Lett. B 625, 333 (2005)



(i) A <1

H = p? — V3(cos 2z + i\ sin 2z)
(a = 7 ) can be converted into the Hermitian Hamiltonian
h=p?— Vo/ (1 — A?) cos 2z

by the complex shift x — = + i, where A = tanh#@, provided
that A< 1.

Then Schrodinger eq" for (xz,z) becomes the Mathieu eq" for
o(z,2) = Pz + 3i6)

¢" 4+ (a — 2gcos2z)p = 0,
with ¢ = —/(1 — X?) and a = 6.



Spectrum can actually be found by use of built-in Mathematica
functions MathieuA and MathieuB, and looks like the following
(Vo=2,X2=0.9):
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(i) A>1

In this case, analogue Schrodinger equation for h is

O + (a+iVo/(A2 — 1)sin2z)p = 0,
No longer Hermitian, and has some complex eigenvaluesT .

That means exponential growth/decay in z.

By shift © - z—x/2 , this again becomes the Mathieu equation,
but with ¢ pure imaginary.

The functions MathieuA and MathieuB are still defined in Math-
ematica and can again be used to map out the band structure:

TAIl complex above Vp ~ 0.888437
N. Midya, B. Roy and R. Choudhury, Phys. Lett. A 374 (2010) 2605



Rea

Band structure (real part) for A = 1.4 in reduced zone scheme.



(i) A =1

In this case we just have
h=p

So spectrum is just 8 = k2.

However, similarity transformation is now singular since 6 — oo,
SO can't be used to transform wave-functions.

This case needs to be treated separately.
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3. Dynamics for A <1

Can generate dynamics (development in z) by method of sta-
tionary states [and exploiting similarity transformation’ between

v and ¢ ]:
- Expand initial WF ¢ (z,z = 0) as a superpos"” of orthonormal-
ized “energy” eigenf" oy, (z):
Y(x,z2=0) = > cripy, ()
T

- with
_ ¥y, (C2)Y(@, 2 = 0)da
J %, (—2)Yp, (p)d

Cr

THFEJ: arXiv:1009.5784
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- and then

¢(5137 Z) — Z Crwkr(x)e_iﬁ(kr)z

Take a Gaussian wave-packet ¥ (x,0) = e—(@/w)*  Then intensity
patternT is

=3 El-Ganainy et al.
Optics Letters 32, 2632 (2007)
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Intensity pattern (|y(z,z)|?) for A=0.9, w = 67, Vo =2
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Alternatively, with input ¥(z, 0) = e—(@/w)?+ikoz gett

Longhi4a, V0=0.2, w=80, q0=-1
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fs. Longhi
Phys. Rev. A 81, 022102 (2010)
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4. Special Case )\ = 11

Already mentioned that can’t use similarity transformation to A
0 — 00

But can still use method of stationary states.

Analogue Schrodinger eq" is

d2
_gg — Voexp(irx/a)y = Bi.

TE-M Graefe & HFJ
arXiv:1104.2838, — Phys. Rev. A
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With change of variable y = ygexp(inx/a) , where yg = (a/7)/ Vo ,
this becomes the modified Bessel equation

d*y | dip
2 (a2 2V —
ydyQ—l—ydy (y*+q°)¢Y =0,

with ¢2 = B(a/7)2. Spectrum is free spectrum. Away from BZ
boundaries q € Z, Bloch wave-functions are precisely

Yr(x) = Iy(y)
Makes life easier if we choose a = 7.
Then k= ¢ and y = /Vpe'® .

16
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(i) Jordan associated functions
For k not an integer I.(y) and I_.(y) are linearly independent.
But when k =n we have I_,,(y) = In(y) .

i.e. d only one eigenfunction for g = n? . So eigenfunctions do
not form a complete set.

Spectral singularity, exceptional point, Jordan block.
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Simple matrix example:

Al
v=(33)
has only one eigenvalue A and one eigenvector u = (1,0)

To complete basis, need additional vector v = (0,1), which is a
sol" of the generalized eigenvalue eq"
(M —MNv=u
In general eigenvectors are orthogonal in sense
(ir)1(up)2 =0
for A1 # Ao

At the special point u is self-orthogonal, but (up)(vg) = 1.

19



Essentially same true when M is linear diff! operator H .

Eigenf"s orthogonal w.r. to PT metric

[ dzv 1 (@) (@) = o (k)

Here

o(k) = [ datp_p(@)(a)

IS not positive definite, but alternates from band to band. Hence
in this degenerate case it has to vanish at BZ boundaries.

In fact it turns out that

/ dzip_ (2) () = a sinc(ka)

20



Jordan associated function ¢op(x) = xn(y) defined as derivative
of ¥ w.r. to E, i.e.

1 diyy
Yn — S,

2k dk lk=n
and satisfies ‘generalized eigenvalue equation”

(H — En)@n = Yn

xn(y) undefined up to multiples of I,(y) and K,(y), and must
satisfy Bloch periodicity.

Derivative def gives really simple formulae for ¢, in terms of
Im(y) -

In particular x1(y) = —Ip(y)/(2y) , which automatically has cor-
rect periodicity
21



Time-dependence for Jordan Block
Back to matrix example

If, att =20,
w = au -+ bv

then at a later time ¢

w= e "M (qu + bv)

Now (H — Nu =0 = e iy = ¢~y

whereas (H — \N)v =u =

22



—iHt o —iAt  —i(H—N)t,,

= e M1 —i(H-Mt+...]v

= e M(y—itu)

So generically, Jordan block = linear t-dependence.

Expect same in our case, where H is a differential operator.
BUT, it turns out that this is not the case, and that the linear
growth is saturated’

fS. Longhi, Phys. Rev. A 81, 022102 (2010).
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(ii) Saturation <g(;c) — e—(m/w>2+¢kox)

,”“
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(@) |[¥(x,2)| as a f" of z, = (b) Max. value (red line) of |¢(x,z)| as a f" of z.
- Blue dashed-dotted line: Jordan block contrib™ only.

- Green dashed line: other contrib™ only.
Parameters are: Vo =2, w = 67 and kg = —1.
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- How can this possibly be?7?

- How can an explicit z dependence be compensated by other
(oscillatory) contributions?

- Answer is that
(a) Other contributions “know” about Jordan term

(b) Cancellation can only occur mathematically for limited range
of z

- But that's OK because lattice is finite in x -direction

(c) Can show cancellation explicitly

25



(a) - other contributions “know"” about Jordan term

Y(x,0) = g(x) is expanded as
Y(x,0) = covpo(x) + D cpbp(x) + > [andn(y) + Bnxn(y)]
k#*n n> 0
Then ¥(x,z) is given by
W(z,2) = covola) + . cppp(@)e ™
k#*n
+ 3 [(an — i2B80)In(y) + Brxn(y)le ™

n> 0
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Now ¢ IS given by

and 3, by

where

S 1§ dxp_ () Gr(z)
" T ON [ dap_ (@) (x)

5 = B del(®)Cn(@)
" 2N fg dwln(y)Xn(y).

N-1

Gplz) = > e "M g (1 4+ m).

m=—N
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Numerator of 3, is a continuation of that of ¢

Denominator of ¢;, would vanish at £ = n, and denominator of
Bn is o its derivative in k

Moreover, numerator ¢, of c¢; is highly peaked around £k = 1.
Namely

. 2,2
ckoce_ew/4,wheree=k—1

while denominator nj « €

28



(b) - cancellation can only occur mathematically for limited range
of z

So total contribution from neighbourhood of k=1 and k= —1
IS
iz 1 2 : —iez(z—|—w2/4)
const x I1(y)e z + 5 > (—) sin(2erz)e” *or
r=1 \€r

where ¢, = r/N

Turns out that this is flat for a very long way:

29
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Hint comes from function z +sin(2z)/2:
2

1.5

0.5

But previous function is really flat.
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(c) - can show cancellation explicitly

Can understand the extreme flatness of the plateau in terms of
Jacobi ¥3 functions. Essential function is

j(2)

Z T Z ( >5|n(267~z)6_62/(w2/4—|—zz)

~ oz Z ( )SIr1(2(€rz)e_4'572/7“”2

for the values of z we are considering.
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Not itself a ¥3 function, but j/(2) is:

Q

> 2.2/
142 ) cos(2ez)e v /
7“—1

142 Z cos(2rz/N)e™ " “w?/(4N?)
r=1

— 93 (i, e—wQ/(4N2)>
N

Behaviour of %3 not obvious, .- 1= O(1) for w < 2N .

i'(2)

However, can use alternative notation 9(z,q) = 9¥3(z|r), where
q = eTT - and apply Jacobi’'s imaginary transformation:

93(2|r) = (—ir) 2672/ (TT) 9 (27|17,
where 7/ = —1/7.
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This converts j5/(z) to

4N —47T2N2/w2)
5% €
w

N
J'(z) = 2y 4wy (

Now second argument of ¢¥3 is small, so for reasonable z can
approximate 93 by 1.

Then behaviour dominated by preceding Gaussian 6_422/w2 - which
rapidly |, corresponding to plateau in j(z)
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Gaussian eventually overwhelmed by the cosh terms occurring in
expansion of 3.

- Must be so, .- ¥3 periodic in z.

j'(2)

40 60 80 100 120

j'(z) from previous slide
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6. Conclusions

Showed how to exploit similarity transformation for unbroken
PT case A <1

Showed how to use method of stationary states for P71 -
breaking threshold A =1

In this case elucidated unexpected phenomenon of saturation

Optics very fertile ground for exploitation of PT symmetry.
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- Interesting and useful properties

- Can exploit possibility of switching from broken to unbro-
ken phase

- Interesting to consider materials where n varies with z as
welll

JfLin et al.
PRL 106, 213901 (2011)
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