PT-symmetric Sinusoidal Optical Lattices

 at the Symmetry-Breaking ThresholdH. F. Jones
Imperial College London

Outline

1. Introduction - $P T$-symmetry and Optics

The Optical Potential $V=V_{0}(\cos (2 \pi x / a)+i \lambda \sin (2 \pi x / a))$
2. Spectrum
3. Dynamics for $\lambda<1$
4. Special Case $\lambda=1$
(i) Jordan functions
(ii) Saturation
5. Conclusions

1. PT-symmetry and Optics

Start with scalar Helmholtz equation

$$
\left(\frac{\partial^{2}}{\partial z^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k^{2}\right) E(x, z)=0
$$

Thinking of a medium with $n=n_{0}(1+v(x))$, where $v \ll 1$.
Write $E=e^{i k_{0} z} \psi(x, z)$. Eq ${ }^{\text {n }}$ becomes

$$
\left(\frac{\partial^{2}}{\partial z^{2}}+2 i k_{0} \frac{\partial}{\partial z}+\frac{\partial^{2}}{\partial x^{2}}+\left(k^{2}-k_{0}^{2}\right)\right) \psi=0
$$

Paraxial approximation:
Neglect first term, assuming that $\partial^{2} \psi / \partial z^{2} \ll \partial^{2} \psi / \partial x^{2}$ Also $k^{2}-k_{0}^{2} \approx 2 k_{0}^{2} v$

So get analogue Schrödinger eq ${ }^{\text {n }}$

$$
i \frac{\partial \psi}{\partial z}+\frac{1}{2 k} \frac{\partial^{2} \psi}{\partial x^{2}}+k v(x) \psi=0
$$

with z playing role of t. Excess refractive index $n_{0} v(x)$ can be complex, and can be made PT symmetric.

Such optical systems have all kinds of interesting properties ${ }^{\dagger}$.
${ }^{\dagger}$ R. El-Ganainy et al., Optics Letters 32, 2632 (2007).

The Sinusoidal Potential

Consider Schrödinger eqn

$$
i \frac{\partial \psi}{\partial z}=-\left(\frac{\partial^{2}}{\partial x^{2}}+V(x)\right) \psi
$$

with $V=V_{0}(\cos (2 \pi x / a)+i \lambda \sin (2 \pi x / a))$

Look for "energy" eigenfns of form $\psi(x, z) \propto e^{-i \beta z}$. Eigenfunctions are Bloch functions with periodicity condition

$$
\psi_{k}(x+a)=e^{i k a} \psi_{k}(x)
$$

In first instance $k=k(\beta)$, which have to invert to get spectrum $\beta=\beta(k)$

2. Spectrum

Turns out that spectrum is completely real ($P T$-symmetry unbroken) for $\lambda \leq 1$, and becomes partly complex for $\lambda>1$.

Can be understood in terms of equivalent Hermitian Hamiltonian h, induced by similarity transformation

$$
h=e^{-\frac{1}{2} Q} H e^{\frac{1}{2} Q}
$$

In general Q very difficult to find, but in this case

$$
Q=\theta \widehat{p} \equiv-i \theta d / d x
$$

All it does ${ }^{\dagger}$ is shift x to $x+\frac{1}{2} i \theta$.
${ }^{\dagger}$ C. M. Bender, H. F. Jones and R. J. Rivers
Phys. Lett. B 625, 333 (2005)
(i) $\lambda<1$

$$
H=p^{2}-V_{0}(\cos 2 x+i \lambda \sin 2 x)
$$

($a=\pi$) can be converted into the Hermitian Hamiltonian

$$
h=p^{2}-V_{0} \sqrt{ }\left(1-\lambda^{2}\right) \cos 2 x
$$

by the complex shift $x \rightarrow x+\frac{1}{2} i \theta$, where $\lambda=\tanh \theta$, provided that $\lambda<1$.

Then Schrödinger eq ${ }^{\mathrm{n}}$ for $\psi(x, z)$ becomes the Mathieu eq^{n} for $\varphi(x, z)=\psi\left(x+\frac{1}{2} i \theta\right)$:

$$
\varphi^{\prime \prime}+(a-2 q \cos 2 x) \varphi=0
$$

with $q=-\sqrt{ }\left(1-\lambda^{2}\right)$ and $a=\beta$.

Spectrum can actually be found by use of built-in Mathematica functions MathieuA and MathieuB, and looks like the following ($V_{0}=2, \lambda=0.9$):

Reduced zone scheme

Extended zone scheme
(ii) $\lambda>1$

In this case, analogue Schrödinger equation for h is

$$
\varphi^{\prime \prime}+\left(a+i V_{0} \sqrt{ }\left(\lambda^{2}-1\right) \sin 2 x\right) \varphi=0
$$

No longer Hermitian, and has some complex eigenvalues ${ }^{\dagger}$.
That means exponential growth/decay in z.
By shift $x \rightarrow x-\pi / 2$, this again becomes the Mathieu equation, but with q pure imaginary.

The functions MathieuA and MathieuB are still defined in Mathematica and can again be used to map out the band structure:
${ }^{\dagger}$ All complex above $V_{0} \approx 0.888437$
N. Midya, B. Roy and R. Choudhury, Phys. Lett. A 374 (2010) 2605

Band structure (real part) for $\lambda=1.4$ in reduced zone scheme.
(iii) $\lambda=1$

In this case we just have

$$
h=p^{2}
$$

So spectrum is just $\beta=k^{2}$.

However, similarity transformation is now singular since $\theta \rightarrow \infty$, so can't be used to transform wave-functions.

This case needs to be treated separately.

3. Dynamics for $\lambda<1$

Can generate dynamics (development in z) by method of stationary states [and exploiting similarity transformation ${ }^{\dagger}$ between ψ and φ]:

- Expand initial WF $\psi(x, z=0)$ as a superpos ${ }^{n}$ of orthonormalized "energy" eigenf ${ }^{\mathrm{ns}} \psi_{k_{r}}(x)$:

$$
\psi(x, z=0)=\sum_{r} c_{r} \psi_{k_{r}}(x)
$$

- with

$$
c_{r}=\frac{\int \psi_{-k_{r}}^{*}(-x) \psi(x, z=0) d x}{\int \psi_{-k_{r}}^{*}(-x) \psi_{k_{r}(x)} d x}
$$

[^0]- and then

$$
\psi(x, z)=\sum_{r} c_{r} \psi_{k_{r}}(x) e^{-i \beta\left(k_{r}\right) z}
$$

Take a Gaussian wave-packet $\psi(x, 0)=e^{-(x / w)^{2}}$. Then intensity pattern ${ }^{\dagger}$ is
${ }^{\dagger}$ R. El-Ganainy et al.
Optics Letters 32, 2632 (2007)

Intensity pattern $\left(|\psi(x, z)|^{2}\right)$ for $\lambda=0.9, w=6 \pi, V_{0}=2$

Alternatively, with input $\psi(x, 0)=e^{-(x / w)^{2}+i k_{0} x}$ get †

Longhi4a, V0 $=0.2, w=80, q 0=-1$

${ }^{\dagger}$ S. Longhi
Phys. Rev. A 81, 022102 (2010)

4. Special Case $\lambda=1^{\dagger}$

Already mentioned that can't use similarity transformation to h $\because \theta \rightarrow \infty$.

But can still use method of stationary states.

Analogue Schrödinger eqn is

$$
-\frac{d^{2} \psi}{d x^{2}}-V_{0} \exp (2 i \pi x / a) \psi=\beta \psi
$$

${ }^{\dagger}$ E-M Graefe \& HFJ arXiv:1104.2838, \rightarrow Phys. Rev. A

With change of variable $y=y_{0} \exp (i \pi x / a)$, where $y_{0}=(a / \pi) \sqrt{ } V_{0}$, this becomes the modified Bessel equation

$$
y^{2} \frac{d^{2} \psi}{d y^{2}}+y \frac{d \psi}{d y}-\left(y^{2}+q^{2}\right) \psi=0
$$

with $q^{2}=\beta(a / \pi)^{2}$. Spectrum is free spectrum. Away from $\mathbf{B Z}$ boundaries $q \in Z$, Bloch wave-functions are precisely

$$
\psi_{k}(x)=I_{q}(y)
$$

Makes life easier if we choose $a=\pi$.
Then $k=q$ and $y=\sqrt{V_{0}} e^{i x}$.

(i) Jordan associated functions

For k not an integer $I_{k}(y)$ and $I_{-k}(y)$ are linearly independent.

But when $k=n$ we have $I_{-n}(y)=I_{n}(y)$.
i.e. \exists only one eigenfunction for $\beta=n^{2}$. So eigenfunctions do not form a complete set.

Spectral singularity, exceptional point, Jordan block.

Simple matrix example:

$$
M=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

has only one eigenvalue λ and one eigenvector $u=(1,0)$
To complete basis, need additional vector $v=(0,1)$, which is a sol $^{\mathrm{n}}$ of the generalized eigenvalue eq ${ }^{\text {n }}$

$$
(M-\lambda) v=u
$$

In general eigenvectors are orthogonal in sense

$$
\left(\tilde{u}_{L}\right)_{1}\left(u_{R}\right)_{2}=0
$$

for $\lambda_{1} \neq \lambda_{2}$
At the special point u is self-orthogonal, but $\left(\tilde{u}_{L}\right)\left(v_{R}\right)=1$.

Essentially same true when M is linear difflorator H.

Eigenf ${ }^{\text {ns }}$ orthogonal w.r. to $P T$ metric

$$
\int d x \psi_{-k}(x) \psi_{k^{\prime}}(x)=\sigma(k) \delta_{k k^{\prime}}
$$

Here

$$
\sigma(k) \equiv \int d x \psi_{-k}(x) \psi_{k}(x)
$$

is not positive definite, but alternates from band to band. Hence in this degenerate case it has to vanish at BZ boundaries.

In fact it turns out that

$$
\int d x \psi_{-k}(x) \psi_{k}(x)=a \operatorname{sinc}(k a)
$$

Jordan associated function $\varphi_{n}(x) \equiv \chi_{n}(y)$ defined as derivative of ψ_{n} w.r. to E, i.e.

$$
\varphi_{n}=\left.\frac{1}{2 k} \frac{d \psi_{n}}{d k}\right|_{k=n}
$$

and satisfies "generalized eigenvalue equation"

$$
\left(H-E_{n}\right) \varphi_{n}=\psi_{n}
$$

$\chi_{n}(y)$ undefined up to multiples of $I_{n}(y)$ and $K_{n}(y)$, and must satisfy Bloch periodicity.

Derivative def ${ }^{n}$ gives really simple formulae for φ_{n} in terms of $I_{m}(y)$.

In particular $\chi_{1}(y)=-I_{0}(y) /(2 y)$, which automatically has correct periodicity

Time-dependence for Jordan Block

Back to matrix example

If, at $t=0$,

$$
w=a u+b v
$$

then at a later time t

$$
w=e^{-i H t}(a u+b v)
$$

Now $(H-\lambda) u=0 \Rightarrow e^{-i H t} u=e^{-i \lambda t} u$
whereas $(H-\lambda) v=u \Rightarrow$

$$
\begin{aligned}
e^{-i H t} v & =e^{-i \lambda t} e^{-i(H-\lambda) t} v \\
& =e^{-i \lambda t}[1-i(H-\lambda) t+\ldots] v \\
& =e^{-i \lambda t}(v-i t u)
\end{aligned}
$$

So generically, Jordan block \Rightarrow linear t-dependence.

Expect same in our case, where H is a differential operator. BUT, it turns out that this is not the case, and that the linear growth is saturated ${ }^{\dagger}$
${ }^{\dagger}$ S. Longhi, Phys. Rev. A 81, 022102 (2010).
(ii) Saturation $\left(g(x)=e^{-(x / w)^{2}+i k_{0} x}\right)$

(a) $|\psi(x, z)|$ as a f^{n} of x, z
(b)

(b) Max. value (red line) of $|\psi(x, z)|$ as a f^{n} of z.

- Blue dashed-dotted line: Jordan block contribns only.
- Green dashed line: other contrib ${ }^{\text {ns }}$ only.

Parameters are: $V_{0}=2, w=6 \pi$ and $k_{0}=-1$.

- How can this possibly be??
- How can an explicit z dependence be compensated by other (oscillatory) contributions?
- Answer is that
(a) Other contributions "know" about Jordan term
(b) Cancellation can only occur mathematically for limited range of z
- But that's OK because lattice is finite in x-direction
(c) Can show cancellation explicitly
(a) - other contributions "know" about Jordan term
$\psi(x, 0) \equiv g(x)$ is expanded as

$$
\psi(x, 0)=c_{0} \psi_{0}(x)+\sum_{k \neq n} c_{k} \psi_{k}(x)+\sum_{n>0}\left[\alpha_{n} I_{n}(y)+\beta_{n} \chi_{n}(y)\right]
$$

Then $\psi(x, z)$ is given by

$$
\begin{aligned}
& \psi(x, z)=c_{0} \psi_{0}(x)+\sum_{k \neq n} c_{k} \psi_{k}(x) e^{-i k^{2} z} \\
&+\sum_{n>0}\left[\left(\alpha_{n}-i z \beta_{n}\right) I_{n}(y)+\beta_{n} \chi_{n}(y)\right] e^{-i n^{2} z}
\end{aligned}
$$

Now c_{k} is given by

$$
c_{k}=\frac{\int_{0}^{\pi} d x \psi_{-k}(x) G_{k}(x)}{2 N \int_{0}^{\pi} d x \psi_{-k}(x) \psi_{k}(x)},
$$

and β_{n} by

$$
\beta_{n}=\frac{\int_{0}^{\pi} d x I_{n}(y) G_{n}(x)}{2 N \int_{0}^{\pi} d x I_{n}(y) \chi_{n}(y)}
$$

where

$$
G_{k}(x) \equiv \sum_{m=-N}^{N-1} e^{-i \pi m k} g(x+m \pi)
$$

Numerator of β_{n} is a continuation of that of c_{k}

Denominator of c_{k} would vanish at $k=n$, and denominator of β_{n} is \propto its derivative in k

Moreover, numerator \hat{c}_{k} of c_{k} is highly peaked around $k=1$. Namely
$\widehat{c}_{k} \propto e^{-\epsilon^{2} w^{2} / 4}$, where $\epsilon=k-1$
while denominator $n_{k} \propto \epsilon$
(b) - cancellation can only occur mathematically for limited range of z

So total contribution from neighbourhood of $k=1$ and $k=-1$ is

$$
\text { const } \times I_{1}(y) e^{-i z}\left[z+\frac{1}{2} \sum_{r=1}\left(\frac{2}{\epsilon_{r}}\right) \sin \left(2 \epsilon_{r} z\right) e^{-i \epsilon_{r}^{2}\left(z+w^{2} / 4\right)}\right]
$$

where $\epsilon_{r}=r / N$

Turns out that this is flat for a very long way:

This is for box $|x| \leq N \pi$, where $N=40$

Hint comes from function $z+\sin (2 z) / 2$:

But previous function is really flat.
(c) - can show cancellation explicitly

Can understand the extreme flatness of the plateau in terms of Jacobi ϑ_{3} functions. Essential function is

$$
\begin{aligned}
j(z) & \equiv z+\sum_{r=1}^{\infty}\left(\frac{1}{\epsilon_{r}}\right) \sin \left(2 \epsilon_{r} z\right) e^{-\epsilon_{r}^{2} /\left(w^{2} / 4+i z\right)} \\
& \approx z+\sum_{r=1}^{\infty}\left(\frac{1}{\epsilon_{r}}\right) \sin \left(2 \epsilon_{r} z\right) e^{-4 \epsilon_{r}^{2} / w^{2}}
\end{aligned}
$$

for the values of z we are considering.

Not itself a ϑ_{3} function, but $j^{\prime}(z)$ is:

$$
\begin{aligned}
j^{\prime}(z) & \approx 1+2 \sum_{r=1}^{\infty} \cos \left(2 \epsilon_{r} z\right) e^{-\epsilon_{r}^{2} w^{2} / 4} \\
& =1+2 \sum_{r=1}^{\infty} \cos (2 r z / N) e^{-r^{2} w^{2} /\left(4 N^{2}\right)} \\
& =\vartheta_{3}\left(\frac{z}{N}, e^{-w^{2} /\left(4 N^{2}\right)}\right)
\end{aligned}
$$

Behaviour of ϑ_{3} not obvious, $\because \uparrow=O(1)$ for $w \ll 2 N$.

However, can use alternative notation $\vartheta(z, q)=\vartheta_{3}(z \mid \tau)$, where $q=e^{i \pi \tau}$, and apply Jacobi's imaginary transformation:

$$
\vartheta_{3}(z \mid \tau)=(-i \tau)^{-\frac{1}{2}} e^{-i \tau^{\prime} z^{2} /\left(\pi \tau^{\prime}\right)} \vartheta_{3}\left(z \tau^{\prime} \mid \tau^{\prime}\right)
$$

where $\tau^{\prime}=-1 / \tau$.

This converts $j^{\prime}(z)$ to

$$
j^{\prime}(z)=2 \sqrt{\pi} \frac{N}{w} e^{-4 z^{2} / w^{2}} \vartheta_{3}\left(\frac{4 \pi i N}{w^{2}} z, e^{-4 \pi^{2} N^{2} / w^{2}}\right)
$$

Now second argument of ϑ_{3} is small, so for reasonable z can approximate ϑ_{3} by 1 .

Then behaviour dominated by preceding Gaussian $e^{-4 z^{2} / w^{2}}$, which rapidly \downarrow, corresponding to plateau in $j(z)$

Gaussian eventually overwhelmed by the cosh terms occurring in expansion of ϑ_{3}.

- Must be so, $\because \vartheta_{3}$ periodic in z.

6. Conclusions

- Showed how to exploit similarity transformation for unbroken PT case $\lambda<1$
- Showed how to use method of stationary states for PTbreaking threshold $\lambda=1$
- In this case elucidated unexpected phenomenon of saturation
- Optics very fertile ground for exploitation of $P T$ symmetry.
- Interesting and useful properties
- Can exploit possibility of switching from broken to unbroken phase
- Interesting to consider materials where n varies with z as well ${ }^{\dagger}$
\dagger Lin et al.
PRL 106, 213901 (2011)

[^0]: ${ }^{\dagger}$ HFJ: arXiv:1009.5784

