Université de Nice Sophia Antipolis - CNRS

Institut Non Linéaire de Nice

Quantum multiple scattering

Robin KAISER Nice, France

Quantum Physics with Non-Hermitian Operators DRESDEN June 15 - 25, 2011

L. Bellando, T. Bienaimé , J. Chabé

<u>Collaborations</u> E. Akkermans, Ph. Courteille, N. Piovella

€ : CNRS, UNSA, PACA, CG06, ANR, INTERCAN

Storage of Light in Atomic samples : Disorder vs cooperative effects

Wave propagation in disordered media :

1958 : on average : interferences washed out : random walk / diffusion Light : radiation trapping in stars Electrons : metal (Drude model)

1958 : P.W. Anderson : vanishing diffusion for strong disorder !

Solid State Physics :

Metal-Insulator Transitions for electrons

Light Scattering :

Photonic Crystals, Colloidal Systems, White Paint, Atoms

Matter Waves :

BEC in Disordered Potential, Kicked Rotator

Accoustics :

Metal Rods, Aluminium Beads

Why light localization with atoms ?

role of quantum fluctuations (quantum optics)

- role of entanglement of scatterers (non local potential?)
- ab initio calculations

Open system : resonant scattering :

```
quality factor ~ 108
```

- 'monodisperse' sample : cold atoms
- \Rightarrow delay time' at resonance : $\tau d \sim 50 ns$
- ⇒on resonance nat $\overline{s}1014$ at/cm3 (**Ioffe-Regel**)

Time Resolved Experiments : Radiation Trapping

$$\tau 0 \approx \frac{L2}{\pi 2 \Lambda} \frac{3}{\pi 2} = \frac{3}{\pi 2}$$

 $b = \frac{L}{I}$ optical thickness

Time Resolved Experiments

Slow Diffusion of Light

$$\frac{vtr}{c} = \frac{tr}{c\tau\tau\rho}$$
 द्व 3 · 10-5

D : smaller than in Ti02 with kl द्वा (Dद्मm2/s)

for b=34 :τ0 352 τnatL=4mm

NO interference effect ! द्धLocalization

Transport time for light in cold atoms

... are waves

Random walk : Diffusion coefficient D0 র1 2 / τ I = 1/n σ

Interference correction to Diffusion coefficient D রD0 [1- 1/(k l)2] Strong Localization (D=0) : Ioffe-Regel criterium : k l রা (near field scattering l রা)

Weak Localization => Coherent Backscattering

- · uncorrelated paths add incoherently
- correlated (i.e. reciprocal) paths add coherently

$$\Delta \phi = (\kappa v + \kappa o v \tau) \cdot (\rho v - \rho \sigma v \tau) \Rightarrow \Delta \phi = 0 \quad \phi \circ \rho \quad \alpha v \psi \quad \pi \alpha \tau \eta$$

Coherent
Backscattering<I(0)>
 $<I(\theta)>$ =2

multiple self-aligned Sagnac interferometer

stitut non linéaire de **N**ice

Configuration Average

COHERENT BACKSCATTERING = coherent probe

Internal structure :

Rb = quantum magnets Sr = classical dipole

PRL, **85**, 4269 (2000) PRL, **88**, 203902 (2002) PRL, **89**, 163901 (2002) PRL, **93**, 143906 (2004) **Quantum fluctuations :** inelastic scattering non linear response

Restoring two level atoms:

PRL, 93, 143906 (2004)

Temperature :

'fast' atomic dynamics'slow' transport of light

PRL, 97, 013004 (2006)

Coherent Backscattering

Light waves : white paint (TiO2) teflon, milk, paper tissue rings of Saturn

Acoustic waves : metal rods fish (?)

Matter waves : electrons : negative magneto-resistance not (yet) with ultra-cold atoms

Seismic waves :

Perspectives : Towards strong localization of light

1954 : Dicke super- and subradiant states

Small volume limit

1) Effective Hamiltonian

- Open System
- Properties and eigenvalues of Heff

2) Driven System

- Initial State preparation
- Scattering

1) Effective Hamiltonian

p, q : angle and polarisation dependant

- Open System
- Quantum Extension of Anderson Hamiltonian
- Heisenberg model with global coupling

Photon Escape Rate = Spectrum {Im (Heff) }

size : a = L/Idisorder parameter W=1/kI

Photon Escape Rates

Measure of long lived photons

cooperative effects dominate over disorder ! no phase transition observed with $P(\Gamma)$

Dicke > Anderson

E. Akkermans, A. Gero, RK, PRL, 101, 103602 (2008)

Eigenvalues

Beyond Photon escape times :

Cloud of Atoms = Large Molecule (with 1010 atoms)

stitut non linéaire de **N**i

Eigenvalues of Heff

istitut non linéaire de **N**ice

Eigenvalues

Université de Nice Sophia Antipolis - CNRS

Width distribution \$\neq\$ Escape RatesDensity of States(Lorentz-Lorenz / cooperative Lamb shift)

Random Matrix Theory not valid : Euclidean Random Matrices

1) Effective Hamiltonian

- Open System
- Properties and eigenvalues of Heff

2) Driven System

- Initial State preparation
- Scattering

Driven Timed Dicke State :

Average force on center of mass (easy to measure)

 $\mathbf{F}_{a}=\langle \hat{\mathbf{F}}_{aj}\rangle=-\frac{\hbar\mathbf{k_{0}}\Omega_{0}}{\sqrt{N}}\mathrm{Im}\left[\beta(t)\right]$ Ansatz : $\beta j = \beta T D$ Average Force $\mathbf{F}_{e} = -\hbar \mathbf{k}_{0} \Gamma \left| \beta(t) \right|^{2} f_{N}$ $\frac{F_{c,N}}{F_1}$ $4\Delta_0^2 + \Gamma^2$ b_0 $\overline{24(k\sigma_R)}^2$ Γ^2 $4\Delta_0^2$ $\frac{b_0}{12}$ Emission Superradiance Disorder Diagram द्ध (Mie) Nat/Nmodes ਫaNat / (L/ λ)2 द्मb0

Université Nice Soppie Antipolis stitut non linéaire de **N**ice

Experimental sequence:

- MOT loading (2s).
- Dark MOT (50 ms)
- Optical pumping
- Pushing beam (0.8 ms).
- Time of flight (13 ms)
- Fluorescence imaging ! .

0.8 تتر 1

0.7-

0

0

15

 b_0

10

5

0

20

 b_0

50

25

30

reduced by cooperative scattering (absorption+emission)

PRL, 104, 183602 (2010)

Large volume limit

Modified Angular emission diagram : Mie scattering

Superradiance in :

Looking for subradiance

Dicke subradiance for N two level systems (in free space, N>>1) has **not yet been observed**

- Does not require large spatial densities
- Requires large optical densities
- Requires careful coupling : fragile state

Fano Coupling and controlled subradiance

Svidzinsky et al. PRA 81, 053821 (2010) |**a**(0)>=|TD>

Inhomogeneous broadening in |ei> => coupling in |TD>

Fano Coupling and controlled subradiance

What's next :

- Subradiance experiments
- Look for Anderson (help with 'decoherence')
- Add order (coupled spins on lattice)
- Multiple scattering of quantum fluctuations
- Entanglement

