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Introduction
Fully consistent, unitary quantum theory with complete set of
orthonormal eigenstates is possible for non-Hermitian sys tems
with unbroken PT symmetry if we modify the inner product rule
appropriately.

Obstacles to such formulations are the presence of exceptio nal
points (EP) and spectral singularities (SS) in certain
non-Hermitian systems.

EP is a singularity of non-Hermitian Hamiltonian where
eigenvalues and eigenfunctions for the bound states coales ce,
whereas SS is characteristic feature of non-Hermitian
Hamiltonian possessing continuous spectrum.
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Introduction
There are many signatures to find these singularities

At the spectral singular point of complex scattering
potential the reflection and transmission coefficients
trend to diverge.

Possible presence of a spectral singular point in
non-Hermitian Hamiltonian translates in a pronounced
resonance in scattering cross section.

The two eigenfunctions becomes linearly dependent i.e.
wronskian of these two eigenfunction vanishes
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Single Particle Systems

H =
p2

2m
+ V + iW

=
p2

2m
− V0θ(

a

2
− |x|) + iλ[δ(x− a

2
) − δ(x+

a

2
)].

Note that the Hamiltonian

[H,P ] 6= 0 6= [H,T ] but PT invariant, [H,PT ] = 0.

Obviously it is Parity-Pseudo Hermitian

H† = PHP−1
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Single Particle Systems
To discuss the transmission and reflection for such
system we consider S− matrix approach where
asymptotic channel states |m, k〉, with m = R,L :
〈x|R, k〉 = eikx and 〈x|L, k〉 = e−ikx, are introduced
where R and L stand for right moving and left moving

free particle states and the wave-number k =
√

2m
~2 E.

The on-shell matrix elements of S operator is
〈m, k|S|n, k〉 = Sm,n(k).

Sm,n(k) is the probability amplitude for a state starting
off in the remote past as |n, k〉, to be found, as a result
of evolution through the interaction with the potential, in
the state |m, k〉 in the remote future.

.
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Single Particle Systems
This 2 × 2 matrix S would have been unitary (i.e.
S†S = SS† = I) if the potential was real.

S matrix elements are related to the familiar
transmission (tR and tL) and reflection (rR and rL)
amplitudes for right and left traveling particles:

(

SRR SRL

SLR SLL

)

=

(

tR rL

rR tL

)

With Hermitian Hamiltonian the states evolve in a
unitary manner would imply the relation |tR|2 + |rR|2 = 1,
|tL|2 + |rL|2 = 1 and t∗RrL + r∗RtL = 0.

1st two are conservation of probability, 3rd one implies
transmission and reflection are out of phase.
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Single Particle Systems
In the present case the system is parity
pseudo-Hermitian and S-operator satisfy a
Pseudo-Unitary condition P−1S†PS = I, In the basis of
S-Matrix.

P =

(

0 1

1 0

)

Pseudo- Unitary condition of S-matrix operator implies
that t∗LtR + r∗LrR = 1, r∗LtL + t∗LrL = 0 and
r∗RtR + t∗RrR = 0

Reflection and Transmission for both left and right
incident beams are out of phase.However no
conservation of probability in non-Hermitian system.
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Single Particle Systems
Transmission amplitudes for left and right incident
beams are explicitly found to be the same, and in this
example is given by

tR = tL =
2qke−ika

2qk Cos(qa) − i (q2 + k2 − λ̃2) Sin(qa)
.(1)

Since the Hamiltonian is PT symmetric, the S-matrix is
also PT symmetric, this leads to the fact tR = tL.
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Single Particle Systems
The reflection amplitudes, however, for left and right moving
particles are different and are given by

rL = i
[q2 − (k + λ̃)2]Sin(qa) e−ika

2qk Cos(qa) − i (q2 + k2 − λ̃2) Sin(qa)
.(2)

rR = i
[q2 − (k − λ̃)2]Sin(qa) e−ika

2kq Cos(qa) − i (q2 + k2 − λ̃2) Sin(qa)
.(3)

Where q2 = 2m
~2 (v0 +E) [Deb -Khare-Dutta Roy, PLA 2003]
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Observations:SPS
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Observations:SPS
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Observations:SPS
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Observations:SPS

0 1 2 3 4 5
k0

500

1000

1500

2000
t2

t2

λ = 8.4, q = 7.85

0 10 20 30 40 50
k0

500

1000

1500

2000
t2

t2

λ = 8.4, q = 1.58

B. P. Mandal , BHU, PHHQP-10, MPIPKS, Dresden , June 21, 2011 – p.17



Observations:SPS
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Observations:SPS
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Summery of the Observations
Summery of the observations

rL become singular in more points if strength of
Non-Hermitian increases, but at low energy but no
sharp peaks even with extremely high non-Hermiticity

rR has one singular point for any nonzero (whatsoever
small) value of λ. Singular point shifts depending on the
value of λ and q.

t diverges at one point for particular pair of λ and q. For
a fixed λ more q implies less k∗.

Violation of unitarity diverges at spectral singular points.
Precisely this is the reason of obstruction to develop a
consistent quantum theory with non-Hermitian
Hamiltonain with spectral singular points.
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Single Particle Systems-II
More features of spectral singularity can be seen in a
second example of a P -Pseudo Hermitian Hamiltonian, [
Deb et al PLA 2003]

H =
p2

2m
− v0δ(x) + iλ[δ(x− a

2
) − δ(x+

a

2
)].(4)

Here again H† = PHP−1 but unlike case I the imaginary

part of the potential is not proportional to the derivative of

the real part. Following the method outlined for previous

model one can calculate the different coefficients as using

notations 2mv0

~2 = µ̃, 2mλ
~2 = λ̃ and 2mB

~2 = β2
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Single Particle Systems-II

tL = tR =
1

(1 − i µ̃
2k ) + ( λ̃

2k )2[−(1 − i µ̃
2k ) − i µ̃k e

ika + (1 + i µ̃
2k )e2ika]

,

rL =
i µ̃
2k (1 − λ̃

k + λ̃2

2k2 ) + (1 − λ̃
2k )[(1 + i µ̃

2k ) λ̃
2ke

ika − c.c.]

(1 − i µ̃
2k ) + ( λ̃

2k )2[−(1 − i µ̃
2k ) − i µ̃k e

ika + (1 + i µ̃
2k )e2ika]

,

rR =
i µ̃
2k (1 + λ̃

k + λ̃2

2k2 ) − (1 + λ̃
2k )[(1 + i µ̃

2k ) λ̃
2ke

ika − c.c.]

(1 − i µ̃
2k ) + ( λ̃

2k )2[−(1 − i µ̃
2k ) − i µ̃k e

ika + (1 + i µ̃
2k )e2ika]

,
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Observations: SPS
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Observations: SPS
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Observations: SPS
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Observations: SPS
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Observations: SPS
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Observations: SPS
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Observations: SPS
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Single Particle Systems
Summery of the Observations

Divergence structure changes under λ→ −λ.

Behavior of unitary violation is independent of the fact
whether beam is left moving or right moving.

t has one singularity point for any nonzero (whatsoever
small) value of λ. More singular points when
non-hermiticity strength increases.

Violation of unitarity diverges at spectral singular points.
Precisely this is the reason of obstruction to develop a
consistent quantum theory with non-Hermitian
Hamiltonain with spectral singular points.
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Many Particles
The AN−1 Calogero model (related to AN−1 Lie algebra) is
the simplest example of such a dynamical model,
describing N particles on a line and with Hamiltonian given
by,

H = −1

2

N
∑

j=1

∂2

∂x2
j

+
g

2

∑

j 6=k

1

(xj − xk)2
+
ω2

2

N
∑

j=1

x2
j ,

where g is the coupling of long-range interaction and ω is

the coupling of harmonic confining interaction. This AN−1

Calogero model is solved exactly to obtain the complete

set of discrete energy eigenvalues and corresponding bound

state eigenfunctions.
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Usual Calogero Model
The complete set of energy eigenvalues can be written as

En1,n2,···nN
=
Nω

2
[1 + (N − 1)ν] + ω

N
∑

j=1

nj ,

where njs are non-negative integer valued quantum
numbers with nj ≤ nj+1 and ν is a real positive parameter
related to the coupling constant of long range interaction as

g = ν2 − ν.

This spectrum is same as that for a N number of free

bosonic oscillators apart from a overall shift for all levels.
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Extended Calogero Model
An extension of AN−1 Calogero model with confining term
is proposed by adding a momentum dependent long-range
interaction (δ

∑

j 6=k
1

(xj−xk)
∂

∂xj
)

Hext = −1

2

N
∑

j=1

∂2

∂x2
j

+
g

2

∑

j 6=k

1

(xj − xk)2
+ δ

∑

j 6=k

1

(xj − xk)

∂

∂xj

+
ω2

2

N
∑

j=1

x2
j ,

The PT transformation for such N -particle system can be
written as

i→ −i, xj → −xj , pj → pj
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Extended Calogero Model

where j ∈ [1, 2 · · ·N ] and xj (pj ≡ −i ∂
∂xj

) denotes coordinate
(momentum) operator of the j−th particle. We have shown
that this nonhermitian, PT invariant model can be solved
exactly and within certain range of the related parameters it
yields a real spectrum

En1n2···nN
=
Nω

2
[1 + (N − 1)ν̃ + ω

N
∑

j=1

nj .

Here ν̃ = ν ′ − δ and ν ′ is a real positive parameter which is
related to the coupling constants g and δ as

g = ν ′
2 − ν ′ (1 + 2δ) .(5)
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Extended Calogero Model
It will be interesting to consider complex extension of AN−1

Calogero model without confining term as in such cases will

have scattering states. Before going to discuss that let us

quickly go through the usual AN−1 Calogero model without

confining interaction.
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CM without confining term
AN−1 Calogero model in the absence of confining
interaction is described by the Hamiltonian

H0 = −1

2

N
∑

j=1

∂2

∂x2
j

+
g

2

∑

j 6=k

1

(xj − xk)2
.

The above system is solved to obtain scattering states
within a sector of configuration space corresponding to a
definite ordering of particles like x1 ≥ x2 ≥ · · · ≥ xN . The
zero energy ground state wave function of this model is
given by

ψgr =
∏

j<k

(xj − xk)
ν ,
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CM without confining term
we consider the general eigenvalue equation associated
with the above Hamiltonian

H0ψ = p2ψ,(6)

where p is real and positive. Solutions of this eigenvalue
equation can be written in the form

ψ = ψgrτ(x1, x2, · · · xN ) ,

where τ(x1, x2, · · · xN ) satisfies the following differential
equation,

−1

2

N
∑

j=1

∂2τ

∂x2
j

− ν
∑

j 6=k

1

(xj − xk)

∂τ

∂xj
= p2τ .
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CM without confining term
to separate the ‘radial’ and ‘angular’ part of the
eigenfunction, one assumes that
τ(x1, x2, · · · xN ) = Pk,q(x)χ(r), where the radial variable r is
defined as

r2 =
1

N

∑

i 6=j

(xi − xj)
2

and substitute in the above Schrodinger Eqn. to obtain

N
∑

j=1

∂2Pk,q(x)

∂x2
j

+ ν
∑

j 6=k

1

(xj − xk)

(

∂

∂xj
− ∂

∂xk

)

Pk,q(x) = 0 .
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CM without confining term
Pk,q(x)s are translationally invariant, symmetric, k-th order
homogeneous polynomials also satisfy the following
relations,

N
∑

j=1

∂Pk,q(x)

∂xj
= 0 ,

N
∑

j=1

xj
∂Pk,q(x)

∂xj
= kPk,q(x) .

Note that the index q in Pk,q(x) can take any integral value
ranging from 1 to g(N, k), where g(N, k) is the number of
independent polynomials The radial part satisfies

−d
2χ(r)

dr2
− (1 + 2b)

r

dχ(r)

dr
= p2χ(r) ,

where b = N−3
2 + k + N(N−1)ν

2
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CM without confining term
The above equation admits a solution of the form
χ(r) = r−bJb(pr), where Jb(pr) denotes the Bessel function.
the scattering state eigenfunctions of H0 with eigenvalue p2

are finally obtained as

ψ =
∏

j<k

(xj − xk)
ν
r−bJb(pr)Pk,q(x) .

To find the scattering phase shift for the above model we

need to construct a more general eigenfunction which in the

asymptotic limit (i.e., r → ∞ limit) can be expressed in terms

of an incoming free particle wave function (ψ+)
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CM without confining term
The outgoing free particle wave function (ψ−), where the
incoming wave function will be of the form

ψ+ = exp[ i
N
∑

j=1

pjxj ] ,

This can be achieved by taking appropriate linear
superposition of all degenerate eigenfunctions (with
eigenvalue p2)

ψgen =
∏

j<k

(xj − xk)
ν

∞
∑

k=0

g(N,k)
∑

q=1

Ckqr
−bJb(pr)Pk,q(x) ,

where Ckqs are expansion coefficients.
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CM without confining term
By using this relation for Ckq and also the asymptotic
properties of Bessel function at r → ∞ limit,

Jb(pr) →
1√

2πpr
{e−i(n+ 1

2
)π

2
+ipr + ei(n+ 1

2
)π

2
−ipr} ,

one can write down the asymptotic from of ψgen as

ψgen ∼ ψ+ + ψ− ,

where

ψ± = (2πr)−
1
2p(n− 1

2
)
∏

j<k

(xj − xk)
ν
r−A

∞
∑

k=0

g(N,k)
∑

q=1

C̃kq(αi)r
−kPk,q(x)e
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CM without confining term

with A = b− k = N−3
2 + N(N−1)ν

2 and n = 3−N
2 .
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Extended CM without confining · · ·
Now we have appropriate platform to consider PT
symmetric nonhermitian extension of the Calogero model
without confining interaction. The extended Calogero model
which we will be considering here is described by the
Hamiltonian

Hext = −1

2

N
∑

j=1

∂2

∂x2
j

+
g

2

∑

j 6=

1

(xj − xk)2
+ δ

∑

j 6=k

1

(xj − xk)

∂

∂xj
.
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Extended CM without confining · · ·
We start by observing that the zero energy ground state
wave function of this Hamiltonian is quite similar with the
ground state wave function of the original Calogero model:

ψgr =
∏

j<k

(xj − xk)
ν′

,

where the modified exponent ν ′ is related to the coupling

constants g and δ. For the purpose of obtaining non-singular

ground state eigenfunction at the limit xi → xj, ν ′ should be a

non-negative exponent. This restricts the ranges of coupling

constants g and δ as (i)δ ≥ −1
2 , 0 > g ≥ −(δ + 1

2)2, and (ii)

g ≥ 0 with arbitrary value of δ.
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Extended CM without confining · · ·
The general eigenvalue equation associated the extended
Hamiltonian given by

Hext ψ = p2 ψ,(7)

where p is a real positive parameter. As in the case of
usual Calogero model the solutions of this eigenvalue
equation can be written in the form ψ = ψgrτ

′(x1, x2 · · · xN ).
τ ′(x1, x2 · · · xN ) satisfies a differential equation like

−1

2

N
∑

j=1

∂2τ ′

∂x2
j

− (ν ′ − δ)
∑

j 6=k

1

(xj − xk)

∂τ ′

∂xj
= p2τ ′ .

B. P. Mandal , BHU, PHHQP-10, MPIPKS, Dresden , June 21, 2011 – p.46



Extended CM without confining · · ·
we assume that τ ′(x1, x2 · · · xN ) can be factorized as

τ ′(x1, x2 · · · xN ) = P ′
k,q(x)χ

′(r),

where r is the radial variable and P ′
k,q(x)s are translationally

invariant, symmetric, k-th order homogeneous polynomials
satisfying the differential equations

N
∑

j=1

∂2P ′
k,q(x)

∂x2
j

+ (ν ′ − δ)
∑

j 6=k

1

(xj − xk)

(

∂

∂xj
− ∂

∂xk

)

P ′
k,q(x) = 0 .
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Extended CM without confining · · ·
Note that the form of solution eqn. is same as apart from
the fact that here ν is replaced by ν ′ − δ. Hence P ′

k,q(x) can
be obtained from any given expression of Pk,q(x) by simply
substituting the parameter ν with ν ′ − δ. So the index q in
P ′

k,q(x) can also take values ranging from 1 to g(N, k).
Substituting the factorized form of τ(x1, x2 · · · xN ) and
making use of the properties of P ′

k,q(x) we obtain the
equation satisfied by the ‘radial’ part of the wave function as

−∂
2χ′(r)

∂r2
− 1 + 2b′

r

∂χ′(r)

∂r
= p2χ′(r)
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Extended CM without confining · · ·
with b′ = N−3

2 + k + (ν ′ − δ)N(N−1)
2 . The solution of the

above eqn. can be expressed through the Bessel function:
χ′(r) = r−b′Jb′(pr). Hence the scattering state eigenfinctions
of Hext with real positive eigenvalue p2 are obtained as

ψ =
∏

j<k

(xj − xk)
ν′

r−b′Jb′(pr)P
′
k,q(x) .
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Extended CM without confining · · ·

ψgen =
∏

j<k

(xj − xk)
ν′

∞
∑

k=0

g(N,k)
∑

q=1

C ′
kqr

−b′Jb′(pr)P
′
k,q(x) ,

where C ′
kqs are expansion coefficients which are functions

of particle monenta. Once again by doing dimensional
analysis, we obtain

C ′
kq = p

(3−N)
2

+N(N−1)δ
2 C̃ ′

kq(αi) ,

where C̃ ′
kq(αi) depends only on the angular parts of the

momenta.
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Extended CM without confining · · ·
Using explicit form of C ′

kq and asymptotic properties of
Bessel function we obtain the asymptotic form of ψgen as
ψgen ∼ ψ+ + ψ−, where

ψ± = (2πr)−
1
2p(n′− 1

2
)
∏

j<k

(xj − xk)
ν′

r−A′

∞
∑

k=0

g(N,k)
∑

q=1

C̃ ′
kq(αi)r

−kP ′
k,q(x

In the above expression A′ = b′ − k = N−3
2 + (ν ′ − δ)N(N−1)

2

and n′ = 3−N
2 + N(N−1)δ

2 .
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Extended CM without confining · · ·
the outgoing wave function (ψ−) further can be written as

ψ− = e−iπ(A′+n′)ψ+

(

x→ −Tx, p→ −p
)

= e−iπν′ N(N−1)
2 exp[ i

N
∑

j=1

xj pN+1−j ] .

We can expect spectral singularity for certain value of pi

where wronskian of the asymptotic solutions, ψ± vanish.
Recall,Hψ(x) = p2ψ, satisfying the asymptotic boundary
condition

ψk±(x) → e±ikxasx→ ±∞
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Extended CM without confining · · ·
will have spectral singularity at k = k∗ if ψk∗±(x) are linearly
dependent, that they will have vanishing Wronskian

ψk∗+ψ
′
k∗− − ψk∗−ψ

′
k∗+ = 0

Vanishing Wronskian leads to the condition for spectral
singularity to exists for PT symmetric non-Hermitian
extension of AN−1 Calogero model without confining
interaction is

|pj| = |pN+1−j|
subjected to the other restrictions on particles momentum.

This result is far from completion and further detail investi-

gations are required,
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Conclusions & Discussions
It is very important to know the Exceptional points and
spectral singular points in non-Hermitian theories as
these are the obstacles to have a consistent unitary
quantum theory with complete set of orthonormal
eigenstates.

We consider two 1-dimensional PT symmetric
non-Hermitian system and study the spectral
singularities in different situations by changing the
strength of non-Hermitian interactions.

We observe in both the model that maximal violation of
Unitarity i.e. |t|2 + |r|2 − 1 is the signature for spectral
singularity. To make a general statement one needs to
be confirmed from other models.
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Conclusions & Discussions
Non-Hermitian PT symmetric AN−1 Calogero models
have been considered with and without confining
interaction. We have discreet energy levels when the
confining interaction is present. On the other hand we
have continuous scattering for the system with out
confining interaction.

We obtain an condition for spectral singularity in the
case of non-Hermitian AN−1 Calogero model without
confining potential.

Further investigation regarding transmission and
refection coefficient are required to find the spectral
singular points explicitly.
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THANK YOU
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