General 2×2 \mathcal{PT} -Symmetric Matrices and Jordan Blocks¹

Qing-hai Wang

National University of Singapore

Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden, 23 June 2011

Outline

- ① Definitions of \mathcal{P} , \mathcal{T} , and Inner Products
 - ullet Two Choices of ${\mathcal T}$
 - Inner Products in QM
- $\bigcirc \mathcal{P}$ pseudo-Hermiticity
 - The General Parity Operator
 - The Most General \mathcal{P} -pseudo-Hermitian H
 - The Metric Operator & The Inner Product
 - Jordan Blocks
- \odot \mathcal{PT} Symmetry
 - ullet The General Parity ${\cal P}$
 - The Most General \mathcal{PT} -Symmetric H
 - The Metric Operator & The Inner Product
 - Jordan Blocks
- 4 Conclusions

Definitions of ${\mathcal P}$ and ${\mathcal T}$

- Both are involution: $\mathcal{P}^2 = 1$ & $\mathcal{T}^2 = 1$.
- They commute: $[\mathcal{P}, \mathcal{T}] = 0$.
- ullet Two choices for ${\mathcal T}$

" \mathcal{PT} Symmetry"

$$\mathcal{T}A\mathcal{T} \equiv A^* \quad \Rightarrow \quad \mathcal{P} = \mathcal{P}^*$$

 $[H, \mathcal{P}\mathcal{T}] = 0 \quad \Leftrightarrow \quad \mathcal{P}H\mathcal{P} = H^*$

" \mathcal{P} pseudo-Hermiticity"

$$\mathcal{T}A\mathcal{T} \equiv A^{\dagger} \quad \Rightarrow \quad \mathcal{P} = \mathcal{P}^{\dagger}$$

$$[H, \mathcal{P}\mathcal{T}] = 0 \quad \Leftrightarrow \quad \mathcal{P}H\mathcal{P} = H^{\dagger}$$

Inner Products

- Inner products in QM [Ballentine, Quantum Mechanics]
 - \bullet (ψ,ϕ) is a complex number,
 - ② $(\psi, \phi) = (\phi, \psi)^*$, where * denotes complex conjugate,
 - (§) $(\psi, c_1\phi_1 + c_2\phi_2) = c_1(\psi, \phi_1) + c_2(\psi, \phi_2)$, where c_1 and c_2 are complex numbers,
 - $(\phi, \phi) \ge 0$, with equality holding iff $\phi = 0$.
- In general, $(\psi, \phi) \equiv \langle \psi | W | \phi \rangle$.
 - The metric operator is a Hermitian matrix: $W = W^{\dagger}$
 - ② All the eigenvalues of W are positive: $\lambda^W > 0$.
- A self-adjoint operator in finite dimensions

$$(\psi, H\phi) = (H\psi, \phi) \implies WH = H^{\dagger}W.$$

Definitions of \mathcal{T} and \mathcal{P}

Time reversal

$$\mathcal{T} \equiv \dagger \qquad \Leftrightarrow \qquad \mathcal{T}A\mathcal{T} = A^{\dagger}$$

Parity

$$\begin{split} [\mathcal{P},\mathcal{T}] &= 0 & \Rightarrow & \mathcal{P} = \mathcal{P}^{\dagger} \\ \mathcal{P}(\theta,\varphi) &= \mathbf{n}^r \cdot \boldsymbol{\sigma} = \begin{bmatrix} \cos\theta & \sin\theta \ \mathrm{e}^{-\mathrm{i}\varphi} \\ \sin\theta \ \mathrm{e}^{\mathrm{i}\varphi} & -\cos\theta \end{bmatrix}, \end{split}$$

where $\mathbf{n}^r \equiv (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$.

• Eigenvalues of \mathcal{P} : $\lambda^{\mathcal{P}} = \pm 1$.

The Most General \mathcal{P} -pseudo-Hermitian H

Hamiltonian

$$H = e\mathbf{1} + \left(\gamma \mathbf{n}^r + \mathrm{i}\rho\sin\delta\mathbf{n}^\theta + \mathrm{i}\rho\cos\delta\mathbf{n}^\varphi\right) \cdot \boldsymbol{\sigma}$$

$$= \begin{bmatrix} e + \gamma\cos\theta - \mathrm{i}\rho\sin\theta\sin\delta & (\gamma\sin\theta + \mathrm{i}\rho\cos\theta\sin\delta + \rho\cos\delta)\mathrm{e}^{-\mathrm{i}\varphi} \\ (\gamma\sin\theta + \mathrm{i}\rho\cos\theta\sin\delta - \rho\cos\delta)\mathrm{e}^{\mathrm{i}\varphi} & e - \gamma\cos\theta + \mathrm{i}\rho\sin\theta\sin\delta \end{bmatrix}$$

with

$$\mathbf{n}^{\theta} \equiv (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta)$$
$$\mathbf{n}^{\varphi} \equiv (-\sin \varphi, \cos \varphi, 0)$$

Eigenvalues

$$\lambda_{\pm}^{H} = e \pm \sqrt{\gamma^2 - \rho^2}$$

Eigenstates

$$H|E_{\pm}\rangle = \lambda_{+}^{H}|E_{\pm}\rangle$$

• Hermitian limit: $\rho = 0$. All 2×2 Hermitian matrices are $\mathcal{P}(\theta,\varphi)$ -pseudo-Hermitian.

The Metric Operator ${\cal W}$

• The self-adjointness of $H \Rightarrow$ a dynamic W:

$$WH = H^{\dagger}W$$

The metric operator

$$W = u \left[\gamma \mathbf{1} + \left(v \, \mathbf{n}^r + \rho \cos \delta \, \mathbf{n}^\theta - \rho \sin \delta \, \mathbf{n}^\varphi \right) \cdot \boldsymbol{\sigma} \right]$$

with
$$u\gamma > 0$$
 & $v^2 < \gamma^2 - \rho^2$

ullet Eigenvalues of W

$$\lambda^W = u \left[\gamma \pm \sqrt{\rho^2 + v^2} \right] > 0$$

• With a proper choice of $u \& v, W = \mathcal{PC}$.

The Inner Product

- Definition: $(\psi, \phi)_W \equiv \langle \psi | W | \phi \rangle$
- Orthogonality: $\langle E_+|W|E_-\rangle=0=\langle E_-|W|E_+\rangle$
- Normalization

$$\mathcal{N}_{\pm} \equiv \langle E_{\pm}|W|E_{\pm}\rangle
= |n_{\pm}|^{2}u\sqrt{\gamma^{2}-\rho^{2}}\left(\gamma \pm \sqrt{\gamma^{2}-\rho^{2}}\right)\left(\sqrt{\gamma^{2}-\rho^{2}} \pm v\right)
> 0$$

- P-inner product defines a Krein space:
 - Orthogonality: $\langle E_+|\mathcal{P}|E_-\rangle = 0 = \langle E_-|\mathcal{P}|E_+\rangle$
 - But $\langle E_+|\mathcal{P}|E_+\rangle$ and $\langle E_-|\mathcal{P}|E_-\rangle$ have opposite signs.

Jordan Blocks

- Condition: $\gamma^2 = \rho^2 \neq 0$
- Assume $\gamma = \rho$
- ullet Only one eigenstate: $H|\Phi_0
 angle=e|\Phi_0
 angle$

$$|\Phi_0\rangle = n_0 \begin{bmatrix} \cos\frac{\theta}{2} - e^{-i(\delta+\varphi)}\sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} - e^{-i(\delta+\varphi)}\cos\frac{\theta}{2} \end{bmatrix}$$

Jordan chain:

$$(H - e\mathbf{1})|\Phi_1\rangle = |\Phi_0\rangle$$

$$\downarrow \downarrow$$

$$|\Phi_1\rangle = n_0 \frac{e^{-i(\delta + \varphi)}}{\gamma} \begin{bmatrix} \sin\frac{\theta}{2} \\ \cos\frac{\theta}{2} \end{bmatrix} + \alpha|\Phi_0\rangle$$

with arbitrary α .

What goes wrong when H approaches a Jordan block?

- Close to a Jordan block: $\rho^2 \equiv \gamma^2 (1 \epsilon) \neq 0$, where $0 < \epsilon \ll 1$
- For simplicity, fix u and set v = 0.
- ullet What happens to W?
 - The larger eigenvalue of W: $\lambda_{>}^{W} \sim 2u\gamma$
 - The smaller eigenvalue of W: $\lambda_<^W \sim \frac{1}{2} u \gamma \epsilon$
 - ullet W stops being positive definite.
- How about eigenstates?
 - Normalization: $\mathcal{N}_{\pm} \sim |n_{\pm}|^2 u \gamma^3 \epsilon$
 - Eigenstates cannot be normalized.

Definitions of ${\mathcal T}$ and ${\mathcal P}$

Time reversal

$$\mathcal{T} \equiv * \Leftrightarrow \mathcal{T}A\mathcal{T} = A^*$$

- ullet Parity is real: $[\mathcal{P},\mathcal{T}]=0$ \Rightarrow $\mathcal{P}=\mathcal{P}^*$
- Parity #1

$$\mathcal{P}_1 = \begin{bmatrix} \cos \theta & \sin \theta \ e^{-\varphi} \\ \sin \theta \ e^{\varphi} & -\cos \theta \end{bmatrix}$$

Parity #2

$$\mathcal{P}_2 = \begin{bmatrix} \cosh \theta & \sinh \theta e^{-\varphi} \\ -\sinh \theta e^{\varphi} & -\cosh \theta \end{bmatrix}$$

• Eigenvalues of \mathcal{P} : $\lambda^{\mathcal{P}} = \pm 1$.

The Most General \mathcal{PT} -Symmetric H

Hamiltonian #1

$$H_1 = \begin{bmatrix} e + \gamma \cos \theta \cos \delta - \mathrm{i} \rho \sin \theta & (\gamma \sin \theta \cos \delta - \mathrm{i} \gamma \sin \delta + \mathrm{i} \rho \cos \theta) \mathrm{e}^{-\varphi} \\ (\gamma \sin \theta \cos \delta + \mathrm{i} \gamma \sin \delta + \mathrm{i} \rho \cos \theta) \mathrm{e}^{\varphi} & e - \gamma \cos \theta \cos \delta + \mathrm{i} \rho \sin \theta \end{bmatrix}$$

Hamiltonian #2

$$H_2 = \begin{bmatrix} e + \gamma \cos(\delta + \mathrm{i}\theta) & -\mathrm{i}[\gamma \sin(\delta + \mathrm{i}\theta) - \rho]\mathrm{e}^{-\varphi} \\ \mathrm{i}[\gamma \sin(\delta + \mathrm{i}\theta) + \rho]\mathrm{e}^{\varphi} & e - \gamma \cos(\delta + \mathrm{i}\theta) \end{bmatrix}$$

Eigenvalues

$$\lambda_{\pm}^{H} = e \pm \sqrt{\gamma^{2} - \rho^{2}}$$

- Eigenstates of $H\colon H|E_{\pm}\rangle = \lambda_{\pm}^H|E_{\pm}\rangle$
- When \mathcal{PT} symmetry is not broken $(\rho^2 \leq \gamma^2)$, they are also the eigenstates of \mathcal{PT} : $\mathcal{PT}|E_\pm\rangle \equiv \mathcal{P}|E_\pm\rangle^* = \lambda_\pm^{\mathcal{PT}}|E_\pm\rangle$.

Hermitian Limit

- Hamiltonian #1: $\rho = \phi = 0$
 - $H_1 \rightarrow \begin{bmatrix} e + \gamma \cos \theta \cos \delta & \gamma \sin \theta \cos \delta i\gamma \sin \delta \\ \gamma \sin \theta \cos \delta + i\gamma \sin \delta & e \gamma \cos \theta \cos \delta \end{bmatrix}$ • All $2 \times \bar{2}$ Hermitian matrices are $\mathcal{P}_1 \mathcal{T}$ -symmetric.
- Hamiltonian #2: $\rho = \phi = \theta = 0$
 - $H_2 \rightarrow \begin{bmatrix} e + \gamma \cos \delta & -i\gamma \sin \delta \\ i\gamma \sin \delta & e \gamma \cos \delta \end{bmatrix}$
 - Only some Hermitian matrices are $\mathcal{P}_2\mathcal{T}$ -symmetric.
- Hermitian H_2 is just a special case of Hermitian H_1 with $\theta = 0$.
- H_1 and H_2 coincide when $\phi = \theta = 0$.

The Metric W

• The self-adjointness of $H \Rightarrow$ a dynamic W:

$$WH = H^{\dagger}W$$

Metric operator #1

$$W_1 = u \begin{bmatrix} \left[\gamma + \cos\theta(\rho\sin\delta + v\cos\delta) \right] \mathrm{e}^{\varphi} & \sin\theta(\rho\sin\delta + v\cos\delta) + \mathrm{i}(\rho\cos\delta - v\sin\delta) \\ \sin\theta(\rho\sin\delta + v\cos\delta) - \mathrm{i}(\rho\cos\delta - v\sin\delta) & \left[\gamma - \cos\theta(\rho\sin\delta + v\cos\delta) \right] \mathrm{e}^{-\varphi} \end{bmatrix}$$

Metric operator #2

$$W_2 = u \begin{bmatrix} [\gamma \cosh \theta + (\rho \sin \delta + v \cos \delta)] e^{\varphi} & \gamma \sinh \theta + i(\rho \cos \delta - v \sin \delta) \\ \gamma \sinh \theta - i(\rho \cos \delta - v \sin \delta) & [\gamma \cosh \theta - (\rho \sin \delta + v \cos \delta)] e^{-\varphi} \end{bmatrix}$$

- Both with $u\gamma > 0 \& v^2 < \gamma^2 \rho^2$
- ullet Eigenvalues of W

$$\lambda^W = u \left[\gamma \pm \sqrt{\rho^2 + v^2} \right] > 0$$

The Inner Product

- Definition: $(\psi, \phi)_W \equiv \langle \psi | W | \phi \rangle$
- Orthogonality

$$\langle E_+|W|E_-\rangle = 0 = \langle E_-|W|E_+\rangle$$

Normalization

$$\mathcal{N}_{\pm} \equiv \langle E_{\pm}|W|E_{\pm}\rangle$$

$$= |n_{\pm}|^2 u \gamma \sqrt{\gamma^2 - \rho^2} \left(\sqrt{\gamma^2 - \rho^2} \pm v\right)$$

$$> 0$$

Jordan Blocks

- Condition: $\gamma^2 = \rho^2 \neq 0$
- Assume $\gamma = \rho$
- One eigenstate: $H_1|\Phi_0\rangle=e|\Phi_0\rangle$

•
$$|\Phi_0\rangle = n_0 \begin{bmatrix} \cos\frac{\theta}{2}(1-\sin\delta) + ie^{-\varphi}\sin\frac{\theta}{2}\cos\delta \\ -\sin\frac{\theta}{2}(1-\sin\delta) + ie^{-\varphi}\cos\frac{\theta}{2}\cos\delta \end{bmatrix}$$

- It is also an eigenstate of \mathcal{PT} : $\mathcal{PT}|\Phi_0\rangle=\frac{n_0^*}{n_0}|\Phi_0\rangle$
- The Jordan chain: $(H_1 e\mathbf{1})|\Phi_1\rangle = |\Phi_0\rangle$
 - $|\Phi_1\rangle = n_0 \frac{1-\sin\delta}{\gamma\cos\delta} \begin{bmatrix} \cos\frac{\theta}{2} \\ -\sin\frac{\theta}{2} \end{bmatrix} + \alpha |\Phi_0\rangle$ with arbitrary α .
 - When α is real, $|\Phi_1\rangle$ is also an eigenstate of \mathcal{PT} with same eigenvalue, $\mathcal{PT}|\Phi_1\rangle=\frac{n_0^*}{n_0}|\Phi_1\rangle$
- Similar results for Case #2.

What goes wrong when H approaches a Jordan block?

- Exactly the same thing happens.
- Close to a Jordan block: $\rho^2 \equiv \gamma^2 (1 \epsilon) \neq 0$, where $0 < \epsilon \ll 1$
- For simplicity, fix u and set v = 0.
- What happens to W?
 - The larger eigenvalue of W: $\lambda^W_> \sim 2u\gamma$
 - The smaller eigenvalue of W: $\lambda_<^W \sim \frac{1}{2} u \gamma \epsilon$
 - ullet W stops being positive definite.
- How about eigenstates?
 - Normalization: $\mathcal{N}_{\pm} \sim |n_{\pm}|^2 u \gamma^3 \epsilon$
 - Eigenstates cannot be normalized.

Concluding Remarks

- All 2×2 Hermitian matrices are both \mathcal{P} -pseudo-Hermitian and \mathcal{PT} -symmetric with respect to some \mathcal{P} .
- ullet In ${\mathcal P}$ pseudo-Hermiticity, ${\mathcal P}$ can be used to define a Krein space.
- When \mathcal{PT} symmetry is not broken, eigenstates of \mathcal{PT} -symmetric H are also eigenstates of \mathcal{PT} .
- Both \mathcal{P} -pseudo-Hermitian and \mathcal{PT} -symmetric matrices may form Jordan block.
- ullet When H forms a Jordan block, W becomes ill-defined and the eigenstates cannot be normalized.

