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Open quantum systems have a continuous spectrum, but 
underlying chaos can still profoundly affect the dynamics.


We consider two different types of open physical system in 
which chaos and resonances in the underlying classical 
dynamics largely determine the quantum dynamics:


1. Scattering states in ballistic electron waveguides.


2. Scattering states of a molecule.




Wigner Eisenbud Scattering theory
 Ĥ !E = E !E

! = 1,...,MScattering channels


Reaction region basis states

Scattering state in the reaction region 


Asymptotic incoming              and outgoing                scattering state   
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Wigner-Eisenbud reaction matrix
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Scattering matrix S connects incoming to outgoing states       
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Effective Hamiltonian
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Chaotic structures in 

ballistic electron waveguides.




Ballistic electron waveguide
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Quantum point contact


Conductance quantization


Ballistic electron waveguide (lead)


Two-dimensional electron gas
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Energy of electron in nth longitudinal 

and nth transverse mode of the lead.
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Quasibound states can live on dynamical

 structures in  ballistic electron waveguides.




Quasibound states in ballistic electron waveguides

H. Lee, C. Jung, and L.E.Reichl,  PRB 73  195315 (2006)


Waveguide channel


Birkhoff coordinates

off bottom of channel


Hetero-clinic tangles


H. Lee and L.E.Reichl,  PRB 77 205318 (2008




Quasibound states in ballistic electron waveguides
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Quasibound states in ballistic electron waveguides






Superradiant and subradiant states


Symmetric quasibound scattering state


Anti-symmetric quasibound scattering state


Poles of scattering 

matrix


Bi-ripple GaAs waveguide (L=3.3nm, a=1.38nm, W=60nm) 


E1=0.50eV

G=2e2T/h




The lifetime               of the superradiant state decreases as 1/N, 
where N is the number of quantum dots in the waveguide.
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In the GaAs waveguide, the “superradiant” and “subradiant” poles oscillate in a circle 
(with        phase difference) in the complex energy plane (and change identities)  as 
distance between quantum dots increases. 


At some distances a “bound state in the continuum” can form.


In the GaAs waveguide, the Dicke effect does not decay with distance between 
the quantum dots.


H. Lee and L.E. Reichl PRB 79 193305 (2009)
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Quasibound states in the HOCl molecule




Dynamics of the HOCl molecule

Kinetic energy
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 µ1 =
mCl mH + mO( )
mCl + mH + mO

µ2 =
mHmO

mH + mO

Restrict to total angular momentum  Ltot=0


With Ltot=0,  Cl and H-O can rotate relative to each other


Hamiltonian for HOCl 
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r0=1.85 a, where a0=0.529x10-10 m is Bohr radius.


Dissociation of Cl at energy Ed=20,312cm-1=2.518eV
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Classical bound motion of HOCl molecule


(below dissociation of Cl from H-O)


E=14,000cm-1


E=17,020cm-1


E=20,150cm-1


Barr, Na, Reichl, Jung, PRE 79, 026215(2009)




Classical Scattering of Cl from H-O


(above dissociation of Cl from H-O) 


Two iterations of stable manifold


Scattering dynamics has fractal intervals




HOCl Molecule (Quantum)


r0=1.85 a, where a0=0.529x10-10 m is Bohr radius.


Dissociation of Cl at energy Ed=20,312cm-1=2.518eV


Hamiltonian governing quantum dynamics of

HOCl above and below dissociation assuming Ltot=0.


V (R,! )

Barr, Na, Reichl, PRA  83, 062510 (2011)




Bound states of HOCl Molecule
 E=20,150cm-1


Bound states tend to 

sit on periodic orbits




Wigner Eisenbud Scattering theory
 Ĥ !E = E !E

Scattering channels m=1,…,M correspond to different incident angular momentum                                       


Scattering state                  in the reaction region is expanded in terms of a discrete set of basis states that are

 eigenstates of the full Hamiltonian in the reaction region and have zero slope boundary conditions 

at the interface of the reaction region and the asymptotic region.  They are obtained numerically. 


Asymptotic incoming  and outgoing   scattering states are Hankel functions   


Scattering matrix


Effective Hamiltonian


!E
asymp r( ) = AmHm

(2) kmr( ) + BmHm
(1) kmr( )( )

m
" exp(im# )

!E
reac r( )

Barr and Reichl, PRA 81, 022707 (2010)




E=20,375 -i1.58x10-5cm-1


E=20,343 –i8.48x10-5cm-1


Some long lived quasibound states


E=20,782-I3.36x10-4cm-1


E=21,000


E=20,150




E=20,559 -i1.24x10-3cm-1 


E=20,433 –i0.03cm-1


Some shorter lived quasibound states


E=20,682-i2.0cm-1




Scattering resonances


E=20,559 -i1.24x10-3cm-1





 
 
Conclusion


Chaotic structures can exist in open systems and provide 
an important platform to support quasibound state 
formation in the continuum.



