Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions

Dresden 2011

- Microwave billiards and quantum billiards
- Microwave billiards as a scattering system
- Eigenvalues and eigenfunctions of a dissipative system near an exceptional point
- Properties of exceptional points in the time domain
- Induced violation of time-reversal invariance \rightarrow determination of \hat{H}_{eff} at the EP

Supported by DFG within SFB 634

S. Bittner, C. Dembowski, B. Dietz, J. Metz, M. Miski-Oglu, A. R., F. Schäfer H. L. Harney, H. A. Weidenmüller, D. Heiss, C. A. Stafford

Cylindrical Microwave Billiards

$$\begin{split} & \text{vectorial} \\ & \text{Helmholtz equation} \ \left(\Delta + k_{\mu}^{2} \right) \vec{E}_{\mu}(\vec{r}) = 0, \quad \vec{n} \times \vec{E}_{\mu}(\vec{r}) \Big|_{\partial G} = 0, \quad k_{\mu} = \frac{2\pi f_{\mu}}{c} \\ & \text{cylindrical resonators} \qquad f \leq f_{max} = \frac{c}{2d} \quad \Rightarrow \quad \vec{E}_{\mu}(\vec{r}) = E_{\mu}(x, y) \vec{e}_{z} \\ & \text{scalar} \\ & \text{Helmholtz equation} \qquad \left(\Delta + k_{\mu}^{2} \right) E_{\mu}(x, y) = 0, \quad E_{\mu}(x, y) \Big|_{\partial G} = 0 \end{split}$$

Microwave and Quantum Billiards

$$(\Delta + k^2)E_z(x, y) = 0, E_z(x, y)|_{\partial G} = 0$$

- resonance frequencies \leftrightarrow eigenvalues
 - electric field strengths \leftrightarrow

normal conducting resonators \rightarrow ~700 eigenfunctions

superconducting resonators \rightarrow ~1000 eigenvalues

$$(\Delta + k^2)\Psi(x, y) = 0, \Psi(x, y)\Big|_{\partial G} = 0$$

- eigenfunctions

Microwave Resonator as a Scattering System

- Microwave power is emitted into the resonator by antenna ① and the output signal is received by antenna ② → Open scattering system
- The antennas act as single scattering channels

• Transmission measurements: relative power transmitted from a to b

$$\mathbf{P}_{\mathrm{out,b}} \,/\, \mathbf{P}_{\mathrm{in,a}} \,\propto \left| \mathbf{S}_{\mathrm{ba}} \right|^2$$

- Scattering matrix $\hat{S} = \hat{I} 2\pi i \hat{W}^T (E \hat{H} + i\pi \hat{W}\hat{W}^T)^{-1} \hat{W}$
- \hat{H} : resonator Hamiltonian
- \hat{W} : coupling of resonator states to antenna states and to the walls

Resonance Parameters

• Use eigenrepresentation of

$$\hat{\mathbf{H}}_{\rm eff} = \hat{\mathbf{H}} - \mathbf{i}\pi \hat{\mathbf{W}} \hat{\mathbf{W}}^{\rm T}$$

and obtain for a scattering system with isolated resonances

 $a \rightarrow resonator \rightarrow b$

$$S_{ba} = \delta_{ba} - i \sum_{\mu} \frac{\sqrt{\Gamma_{\mu a} \Gamma_{\mu b}}}{f - f_{\mu} + (i/2)\Gamma_{\mu}}$$

• Here:
$$f_{\mu}$$
 = real part
 Γ_{μ} = imaginary part \int of eigenvalues e_{μ} of \hat{H}_{eff}

- Partial widths $\Gamma_{\mu,a}$, $\Gamma_{\mu,a}$ and total width Γ_{μ}

Typical Transmission Spectrum

 $|S_{ba}|^2 = P_{out,b} / P_{in,a}$

TECHNISCHE

UNIVERSITÄT DARMSTADT

Eigenvalues and Eigenfunctions of a Dissipative System near an EP

- At an exceptional point (EP) two (or more) complex eigenvalues and the corresponding eigenfunctions of a dissipative system coalesce
- The crossing of two eigenvalues is accomplished by the variation of two parameters
- Sketch of the experimental setup:

- Divide a circular microwave billiard into two approximately equal parts
- The opening s controls the coupling of the eigenmodes of the two billiard parts
- The position δ of the Teflon disc determines the resonance frequencies of the left part

Two-state Matrix Model

(C. Dembowski et al., Phys. Rev. E 69, 056216 (2004))

Isolated EP

 \rightarrow in its vicinity the dynamics is determined by the two eigenstates

 \rightarrow model system with a 2d non-Hermitian symmetric matrix

$$\hat{H}_{eff}(s,\delta) = \begin{pmatrix} E_1 & H_{12}^s \\ H_{12}^s & E_2 \end{pmatrix}$$

 $(E_1 + E_2)$

- All entries are functions of δ and ${\rm s}$
- Eigenvalues:

$$e_{1,2} = \left(\frac{1}{2}\right) \pm \Re$$
$$\Re = H_{12}^{S} \sqrt{Z^{2} + 1}; \ Z = \frac{E_{1} - E_{2}}{2H_{12}^{S}}$$

• EPs:
$$\Re = 0: Z = \pm i \leftrightarrow \delta = \delta_{EP}, s = s_{EP}$$

Encircling the EP in the Parameter Space

• Encircling the EP located at the parameter values $s^{\rm EP}$ and $\delta^{\rm EP}$

• The **eigenvalues are interchanged** and one of the eigenfunctions in addition picks up a **topological phase** π

$$\begin{pmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{e}_2 \\ \mathbf{e}_1 \end{pmatrix} \qquad \begin{pmatrix} |\Psi_1\rangle \\ |\Psi_2\rangle \end{pmatrix} \rightarrow \begin{pmatrix} |\Psi_2\rangle \\ -|\Psi_1\rangle \end{pmatrix}$$

Experimental Setup

(C. Dembowski et al., Phys. Rev. Lett. 86, 787 (2001))

• Change of the real (resonance frequency) and the imaginary (resonance width) part of the eigenvalue $e_{1,2} = f_{1,2} + i \cdot \Gamma_{1,2}$ for varying δ and fixed s

TECHNISCHE

- Use dielectric perturbation body, e.g. magnetic rubber
- Maier-Slater theorem: $\delta f(x,y) = c_1 \cdot E^2(x,y)$
- Reconstruct the eigenfunctions from the pattern of nodal lines, where $E(x,y)=0 \rightarrow extraction$ of $\Psi(x, y)$

Evolution of Wave Functions

Chirality of Eigenfunctions

- Eigenfunctions are interchanged and one eigenfunction picks up a **topological phase** of π
- Surrounding the EP four times restores the original situation

What happens at the EP?

(C. Dembowski et al., Phys. Rev. Lett. 90, 034101 (2003))

• At the exceptional point the two eigenmodes coalesce with a phase difference $\pi/2$

- Can this phase difference be measured?
- Choose two eigenmodes which are each localized in one of the semicircular parts of the cavity for s < s^{EP} and δ = δ^{EP} (i.e. f₁=f₂) → these can be excited separately

Measured Phase Difference

- Modes Ψ_1 and Ψ_2 are excited separately by antennas 1 and 2
- Measurement of the phase difference ϕ_0 between the oscillating fields $|\Psi_1\rangle$ and $|\Psi_2\rangle$ at the positions of the antennas

Time Decay of the Resonances near and at the EP

(Dietz et al., Phys. Rev. E 75, 027201 (2007))

- In the vicinity of an EP the two eigenmodes can be described as a pair of coupled damped oscillators
- Near the EP the time spectrum exhibits besides the decay of the resonances oscillations \rightarrow Rabi oscillations with frequency $\Omega = 2\pi f$

$$P(t) \propto \exp(-\Gamma t) \frac{\sin^2(\Omega t)}{\Omega^2}; \Omega \propto \Re$$

• At the EP \Re and Ω vanish \rightarrow no oscillations

$$P(t) \propto t^2 \exp(-\Gamma t)$$

• In distinction, an isolated resonance decays simply exponentially \rightarrow line-shape at EP is not of a Breit-Wigner form

Time Decay of the Resonances "far" from the EP

- Γ₂ = 1.022 ± 0.002 MHz
- Region of interaction at about 2 $\mu s \rightarrow$ Rabi oscillations

Time Decay of the Resonances near and at the EP

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 20

Detailed Balance in Nuclear Reactions

Volume 56B, number 2

PHYSICS LETTERS

14 April 1975

TIME-REVERSIBILITY VIOLATION AND ISOLATED NUCLEAR RESONANCES*

J.M. PEARSON

Laboratoure de Physique Nucléaire, Département de Physique, Université de Montréal, Montréal, Canada

and

A. RICHTER *

Institut für Kernphysik, Technische Hochschule Darmstadt, Darmstadt, W Germany

Received 21 January 1975

It is pointed out that measurements of differential cross-sections in nuclear reactions proceeding via an isolated resonance can provide in principle a test for time reversibility.

• Search for Time-reversal (*T*-) Invariance Violation (TIV) in nuclear reactions

Detailed Balance in Nuclear Reactions

2.A.1: 2.C Nuclear Physics A317 (1979) 300-312; C North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

TEST OF DETAILED BALANCE AT ISOLATED RESONANCES IN THE REACTIONS ${}^{27}Al+p \rightleftharpoons {}^{24}Mg+\alpha$ AND TIME REVERSIBILITY

H. DRILLER ¹¹ and E. BLANKE ¹¹¹

Institut für Experimentalphysik, Ruhr Universität Bochum, 4630 Bochum, Germany

H. GENZ, A. RICHTER and G. SCHRIEDER

Institut für Kernphysik, Technische Hochschule Darmstadt, 6100 Darmstadt, Germany

and

J. M. PEARSON [‡]

Loboratoire de Physique Nucléaire, Département de Physique, Université de Montréal, Montréal, Québec, Canuda

Received 15 September 1978

Abstract: The principle of detailed balance has been tested in the reactions ${}^{27}\text{Al}(p, \alpha_0)^{24}\text{Mg}(Q = 1.600 \text{ MeV})$ and ${}^{24}\text{Mg}(\alpha, p_0)^{27}\text{Al}(Q = -1.600 \text{ MeV})$ at bombarding energies $E_p^{\text{tab}} = 1.35-1.46 \text{ MeV}$ and $E_e^{\text{tab}} = 3.38-3.52 \text{ MeV}$, respectively. Protons and α -particles were detected at $\theta_{c.m.} = 177.7^{\circ}$. The relative strengths of two resonances at $E_x = 12.901 \text{ MeV}(J^x = 2^+)$ and $E_x = 12.974 \text{ MeV}(J^x = 1^-)$ in ${}^{28}\text{Si}$ excited in the forward and backward reaction agree within the experimental uncertainty $\delta = 0.0025 \pm 0.0192$. This experimental result is converted into a difference of phase angles for reduced widths amplitudes, $\Delta \xi = (0.3 \pm 3)^{\circ}$, which is consistent with time reversibility.

 Search for TIV in nuclear reactions
 → upper limits

Induced *T*-Invariance Violation in Microwave Billiards

(B. Dietz et al., Phys. Rev. Lett. 98, 074103 (2007))

- T-invariance violation caused by a magnetized ferrite
- Ferrite features Ferromagnetic Resonance (FMR)
- Coupling of microwaves to the ferrite depends on the direction a b

- Principle of detailed balance:
- Principle of reciprocity:

 $|\mathbf{S}_{ab}|^2 = |\mathbf{S}_{ba}|^2$ $\mathbf{S}_{ab} = \mathbf{S}_{ba}$

Scattering Matrix Description

Remember: Scattering matrix formalism

$$\hat{\mathbf{S}}(\mathbf{f}) = \mathbf{I} - 2\pi \mathbf{i}\hat{\mathbf{W}}^{\mathrm{T}} (\mathbf{f}\mathbf{I} - \hat{\mathbf{H}} + \mathbf{i}\pi \,\hat{\mathbf{W}}\hat{\mathbf{W}}^{\mathrm{T}})^{-1} \hat{\mathbf{W}}$$

• Investigation of *T*-invariant *T*-noninvariant systems

\rightarrow replace \hat{H} by a real symmetric Hermitian matrix

- Note: $\hat{H}_{eff} = \hat{H} i\pi \hat{W} \hat{W}^{T}$ is non-Hermitian in both cases
- Isolated resonances: singlets and doublets $\rightarrow \hat{\mathrm{H}}$ is 1D or 2D
- Overlapping resonances ($\Gamma > D$) $\hat{H} = \frac{\text{GOE}}{\text{GUE}}$ in RMT

(B. Dietz et al., Phys. Rev. Lett. 103, 064101 (2009)

Isolated Resonances - Setup

Singlet with *T*-Violation

• Reciprocity holds \rightarrow *T*-violation cannot be detected this way

Scattering Matrix and *T*-violation

• Scattering matrix element ($\omega = 2\pi f$)

$$S_{ab}(\omega) = \delta_{ab} - 2\pi i \langle a | \hat{W}^{+}(\omega - \hat{H}_{eff})^{-1} \hat{W} | b \rangle$$

Decomposition of effective Hamiltonian

$$\hat{H}_{eff} = i\hat{H}^{a} + \hat{H}^{s}$$

$$\downarrow$$

$$\begin{pmatrix} 0 & iH_{12}^{a} \\ -iH_{12}^{a} & 0 \end{pmatrix}$$

- Ansatz for *T*-violation incorporating the ferromagnetic resonance and its selective coupling to the microwaves
- Note: \hat{H}^s conserves *T*-invariance and \hat{H}^a violates it

T-Violating Matrix Element

• Fit parameters: λ and $\overline{\omega}$

Measured *T*-Violating Matrix Element

- T-violating matrix element shows resonance like structure
- Successful description of dependence on magnetic field
 - $\rightarrow \hat{H}_{eff}$ was determined and will be used to describe TIV at the EP

Relative Strength of *T***-Violation**

Summary and Outlook

- Microwave billiards are precisely controlled, parameter-dependent dissipative systems
- Complex eigenvalues and eigenfunctions can be determined from the billiard scattering matrix
 → Observation of EPs in microwave billiards
- Behavior of eigenvalues close to and at an EP investigated experimentally
- Also time-behavior close to and at an EP was studied \rightarrow disappearance of echoes at the EP \rightarrow t²-behavior
- *T*-invariance violation induced in microwave billiards and observed for doublets of resonances \rightarrow determination of complete \hat{H}_{eff} possible at an exceptional point
- Second talk: Measurement and interpretation of *T*-violation

