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System and environment

I the system is
– a many-particle system with many levels
– described by standard quantum mechanics
– localized in space

I the (natural) environment is
– the continuum of scattering wavefunctions
– described by standard quantum mechanics
– extended in space

I the states of the system have, generally, a finite
lifetime due to embedding the system into the
environment

I the coupling between system and environment has
to be taken into account nonperturbatively

−→ the system is open



Solution of the problem by means of the

Feshbach projection operator

technique



Schrödinger equation in the whole function space

with discrete and scattering states
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Solution (called ’formal’ by Feshbach)
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Solution is exact within P + Q = 1



I The system with N states is localized (Q subsystem)

I In a certain energy window, it is embedded in the
extended continuum of scattering wave functions ξE

C
(P subsystem)

I The states of the Q subspace can interact via the
states of the P subspace

I System and environment are well defined

−→ P + Q = 1

I The system is open



The effective non-Hermitian Hamiltonian

I Heff is non-Hermitian ↔ states of the (localized)
system (Q subspace) interact via a common
(extended) environment (P subspace)

I Eigenfunctions Φλ of Heff are biorthogonal

〈Φ∗k |Φl〉 = δk,l

such that
〈Φk|Φk〉 ≡ Ak ≥ 1



I Effective Hamiltonian consists of a first-order and a
second-order interaction term

Heff = HB + VBCG
(+)
C VCB
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The role of boundary conditions

I Schrödinger equation

(Heff − zλ) Φλ = 0

Heff energy dependent

I resonance states (inside the energy window):
Heff non-Hermitian
zλ = Eλ − i

2 Γλ complex, in general
Φλ complex and biorthogonal, in general
−→ 〈Φ∗λ|Φλ′〉 = δλλ′

I discrete states (beyond the energy window):
Heff Hermitian
zλ = Eλ real, i.e. Γλ = 0 but Eλ 6= EB

λ

Φλ orthogonal
−→ 〈Φλ|Φλ′〉 = δλλ′



Scattering wave function INSIDE the system

ΨE
c = ξE
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Biorthogonal wavefunctions and

exceptional points

in the case of a two-level system



Mathematics: Exceptional points

Consider a family of operators of the form

T(κ) = T(0) + κT′

κ – scalar parameter
T(0) – unperturbed operator
κT′ – perturbation

Number of eigenvalues of T(κ) is independent of κ with the
exception of some special values of κ (exceptional points)
where (at least) two eigenvalues coalesce

Example:

T(κ) =

(
1 κ
κ −1

)
T(κ = ±i)→ eigenvalue 0

T. Kato, Perturbation theory for linear operators



2× 2 Hamiltonian of a physical system

I For example: 2× 2 Hamiltonian

H(ω) =

(
ε1 ω
ω ε2

)
εi – eigenenergies of individual states
ω – interaction via the environment

I Eigenvalues

E± =
ε1 + ε2

2
± Z ; Z ≡

1

2

√
(ε1 − ε2)2 + 4ω2



I Physical meaning of Z

Re(Z) ←→ level repulsion in energy

shift of the states in energy

Im(Z) ←→ width bifurcation

change of the time scale being

characteristic of each state



I The two eigenvalue trajectories cross when

ε1 − ε2

2ω
= ± i

These crossing points may be called exceptional points:

E+ = E− ≡ E0

Here, Re(Z)→ 0 AND Im(Z)→ 0

I The crossing points can be found by varying two
parameters

I As a function of only one parameter, the two states
(usually) avoid crossing at the critical value of the
parameter



I Open quantum system (with decaying states)

ε1 6= ε2 and ω complex; Im(εi) < 0

E1,2 = e1,2 − i
2 γ1,2

ei – position in energy of the state
γi – width (inverse lifetime) of the state

Re(Z)� Im(Z): level repulsion
γ1,2 6= 0 usually

Re(Z)� Im(Z): width bifurcation
γ1,2 = 0 is possible (P-symmetry)
(bound state in the continuum)



I PT symmetric models (with stable states)

(using the formal equivalence between the Schrödinger
equation and the optical wave equation)

experimental results:
Guo et al PRL 103, 093902 (2009)
Rüter et al, Nature Physics 6, 192 (2010)

Re(ε1) = Re(ε2) = e
Im(ε1) = - Im(ε2) (’gain’ and ’loss’)

ω12 = ω∗21 ; Z =
√
|ω|2 − Im(ε)2

E1,2 = e ± i
2 γ1,2

Re(Z)� Im(Z): PT symmetry (γ1,2 = 0)

Re(Z)� Im(Z): PT symmetry breaking (γ1,2 6= 0)



In models for open quantum systems

and in PT symmetric models

exceptional points cause,

in their neighborhood,

non-trivial changes in the system

An exceptional point defines a threshold

of spectroscopic redistribution

and of PT symmetry breaking, respectively



Eigenfunctions at the exceptional point

I Eigenfunctions are linearly dependent

φcr
+ → ± i φcr

− φcr
− → ∓ i φcr

+

analytical studies: Rotter, PRE 64, 036213 (2001)
Günther et al, JPA 40, 8815 (2007)

numerical studies: Magunov et al, JPB 34, 29 (2001)

I Agreement with experimental results:
encircling exceptional points or critical points of avoided
level crossings

| φcr
+ | = | φcr

− |

Dembowski et al., PRL 86, 787 (2001)
Experimentally: wavefunctions (including phases)
are restored after four surroundings



Phases of the eigenfunctions

I Eigenfunctions are biorthogonal

〈φ∗k |φl〉 = δk,l 〈φk|φk〉 ≡ Ak ≥ 1

I Borderline cases
– two distant levels: wavefunctions are orthogonal

〈φ∗k |φk〉 ≈ 〈φk|φk〉 = Ak ≈ 1

– two crossing levels: wavefunctions are linearly
dependent

φk → ± i φl 〈φk|φk〉 = Ak →∞



I Mathematically,

〈φ∗k |φl〉 = C

Physically: for distant levels,

〈φ∗k |φk〉 → 〈φk|φk〉 = 1

Therefore,

C = 1 → Im(C) = 0

→ the phases of the two eigenfunctions φk

relative to one another are

not rigid

in approaching an exceptional point



I Phase rigidity

rk ≡
〈φ∗k |φk〉
〈φk|φk〉

= A−1
k =⇒ 1 ≥ rk ≥ 0

I Experimental proof:
in the regime of overlapping resonances with avoided
level crossings

1 > rk > 0

Dembowski et al., PRL 90, 034101 (2003)
Experimentally: the phase difference between two modes
is π at large distance and π/2 at the singularity



PT symmetry breaking
as well as

spectroscopic redistribution

are accompanied by

non-rigid phases of the eigenfunctions

of the Hamiltonian

in the vicinity of an exceptional point



Biorthogonal wavefunctions and

exceptional points

in the many-level system



The wavefunction ΨE
c int inside the system

I The ΨE
c int can be represented in the set of the

biorthogonal wavefunctions {Φλ} (eigenfunctions
of the non-Hermitian Hamiltonian Heff ) :

|ΨE,R
c int〉 =

∑
λ

cc
λE|Φ

R
λ〉 =

∑
λ

cc
λE|Φλ〉

〈ΨE,L
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L
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∑
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I Normalization

〈ΨE,L
c int|Ψ

E,R
c int〉 =

∑
λ

(cc
λE)2 = C → 1

corresponds to a rotation with

Re(cc
λE) Im(cc

λE) = 0



I Biorthogonality

〈ΨE,R
c int|Ψ

E,R
c int〉 =

∑
λ

(cc
λE)2〈Φλ|Φλ〉 ≡

∑
λ

(cc
λE)2 Ãλ

I Phases of the ΨE
c int are not rigid

ρ̃ =

∣∣∣∣ 〈ΨE,L
c int|Ψ

E,R
c int〉

〈ΨE,R
c int|Ψ

E,R
c int〉

∣∣∣∣ ; 1 ≥ ρ̃ ≥ 0

(summation over all overlapping resonance states)

I Approaching a region with several exceptional points

ρ̃ < 1



Definition of the phase rigidity of the ΨE
c int

I in analogy to the definition of the rλ for two levels

ρ =

∣∣∣∣
∫

dr ΨE
c int(r) 2∫

dr |ΨE
c int(r)| 2

∣∣∣∣
=

∣∣∣∣
∫

dr([ReΨE
c int]2 − [ImΨE

c int]2)∫
dr([ReΨE

c int]2 + [ImΨE
c int]2)

∣∣∣∣
I due to the existence of exceptional points

1 ≥ ρ ≥ 0

I the phase rigidity ρ describes the

internal impurity

of the open quantum system which is

caused by exceptional points



Phase rigidity ρ and alignment

I due to 1 ≥ ρ ≥ 0 a few states of the system can
align, step by step, with the scattering states of
the environment
full alignment is reached for ρ = 0
i.e when the spectroscopic overlap between ΨE

c int

and ξE
c is maximal

I alignment of a few states ΨE
c int with the channel

wavefunctions ξE
c (c = 1, ...,C) occurs

by trapping other resonance states
i.e. by (partial or complete) decoupling them
from the environment

I formation of short-lived aligned states is possible
due to width bifurcation, i.e. ultimately due to
the existence of neighboring exceptional points



System and environment



Alignment of wavefunctions

I The wavefunctions ΨE
c int are the solutions of the

scattering problem inside the system (localized)

The scattering wavefunctions ξE
c (c = 1, ...,C) are the

(extended) wavefunctions of the environment

I Alignment of some wavefunctions ΨE
c int

with the channel wavefunctions ξE
c (c = 1, ...,C)

−→ formation of short-lived states AND

−→ resonance trapping:

all but the aligned resonance states are

hierarchically decoupled (trapped)

from the continuum (environment)

The resonance trapping phenomenon is proven
experimentally: Persson et al., PRL 85, 2478 (2000)



Alignment of the wavefunctions

of the system to the scattering wavefunctions
of the environment

(by trapping of other resonance states)

is equivalent to a

dynamical phase transition

in a realistic many-level quantum system
under the influence of the environment



Phase transitions

under the influence of the

environment



Phase transition

I Toy model Heff = H0 + iαVV+:

one-channel case

all exceptional points accumulate in one point

Heiss, Müller, Rotter, PRE 58, 2894 (1998)

→ a second-order phase transition may occur

order parameter: Γ0/M
(first derivative jumps at αcr)

fluctuations at αcr: Γ0 = |γ01|2/A0

(|γ01|2 →∞ in approaching αcr)

Jung, Müller, Rotter, PRE 60, 114 (1999)



I Realistic system with Heff = HB + VBCG
(+)
C VCB:

hierarchical trapping of resonance states in
the regime of overlapping resonances

many exceptional points, however no
accumulation point

see e.g. Iskra, Rotter, Dittes, PRC 47, 1086 (1993)

→ dynamical phase transition

regime at low level density (small coupling via
the continuum) differs from regime at high level
density (narrow resonances superimposed on
broad resonances)



Can the transition regime between the two
phases be observed experimentally ?

I phase rigidity is given by

0 ≤ ρ ≡
∣∣∣∣
∫

dr ΨE
c int(r) 2∫

dr |ΨE
c int(r) | 2

∣∣∣∣ ≤ 1

I in the transition regime, many exceptional points
→ ρ < 1 → partial alignment of some states

I when all exceptional points accumulate in one point,
the transition regime shrinks to one point in the
parameter space

I when the exceptional points are distributed over a
finite parameter range, the transition region is
observable : e.g. whispering gallery modes cause
enhanced transmission through the system
see e.g. Bulgakov, Rotter, Sadreev, PRE 74, 056204 (2006)

and PRB 76, 214302 (2007)



I Alignment of resonance states (and resonance
trapping)

– is a collective phenomenon to which all
resonance states in a large energy region
contribute (i.e. it
is a global phenomenon, not a local one)

– is environmentally induced

– causes an
enhancement of observable values
in the parameter range where ρ < 1

– causes a reduction of the number of
long-lived resonance states (characteristic
of exceptional points)



Summary



Dynamical phase transitions

– are caused by width bifurcation under
the influence of the environment

– are possible due to non-rigid phases of
the functions ΨE

c int

1 > ρ > 0

in the regime of many overlapping
resonances



– are (mathematically) directly related to
the existence of exceptional points
in a finite range of the control parameter

– consist in spectroscopic redistribution and
PT symmetry breaking, respectively,
starting at a few neighbored exceptional
points

– are observed experimentally
in different quantum systems
and in systems equivalent to them



Appendix related to the poster

Dynamical phase transitions in

quantum mechanics



Niels Bohr 1936

In the atom and in the nucleus
we have indeed to do

with two extreme cases of
mechanical many-body problems

for which a procedure of approximation
resting on a combination of one-body problems,

so effective in the former case,
loses any validity in the latter

where we, from the very beginning,
have to do with

essential collective aspects of
the interplay between the constituent particles

At that time were known:

narrow compound nucleus states at high excitation energy and
shell model states in atoms at low excitation energy



The Nobel Prize in Physics 1963

Maria Goeppert-Mayer
and J. Hans D. Jensen

for their discoveries concerning

nuclear shell structure



The nuclear shell model

I shell model describes individual nuclear states at
low level density

I shell closures in nuclei differ from those in atoms
since the forces differ from one another

I the residual forces of the shell model are of
two-body type

I finite lifetimes of nuclear states are calculated
perturbatively, i.e.
– the shell model Hamiltonian is assumed to be

Hermitian
– particle decay is described by tunneling of the

particle through a barrier
– feedback from the continuum onto the

shell model states is not taken into account



Description of the compound nucleus states

I the question of the Hermiticity of the Hamiltonian
is avoided by considering a certain distribution of
the states

I the narrow compound nucleus states at high level
density are described by means of random
ensembles, mostly by the GOE

I the semicircle of the GOE describes the states in
the middle of the spectrum (far from thresholds)

I GOE is related to quantum chaos,
Bohigas et al, PRL 48, 1086 (1982)

I the time scales of compound nuclear resonances
and direct reaction part are well separated
→ Feshbach unified theory of nuclear reactions



Can the compound nucleus

be described

by the shell model?



Hamilton operator of the system

I assumed to be hermitian in the shell model

finite lifetimes of the states (decay widths)
calculated perturbatively

no feedback from the continuum onto the
shell model states

I hermiticity (or non-hermiticity) of the Hamiltonian
not considered in the random ensemble

consideration of average lifetimes instead of
lifetimes of individual states

no consideration of threshold effects and
no feedback from the continuum



Compound nucleus states and shell model

I GOE is NOT related to a two-body random
ensemble: it contains many-body forces
→ collective features
→ states of the GOE differ from shell model

states (with two-body forces)

I GOE does not contain any threshold effects

I GOE contains level repulsion, however single
resonances do not decay according to an
exponential law
Harney et al, Ann.Phys.(NY) 220, 159 (1992)



Question

Is the statement by Niels Bohr

really wrong?



Main problems of nuclear physics studies

I no direct control parameter due to the strong
nuclear forces
control of average values as function of energy
is possible

I different interpretations of experimental data
are possible by means of different sets of fitting
parameters
e.g. problems in the identification of doorway states,
Jeukenne and Mahaux, Nucl.Phys.A 136, 49 (1969)

I nuclear forces are residual forces that are not
derived from first principles but are described
by means of parameters fitted to many nuclei



Problems of the random ensembles
with experimental results

I mean compound nucleus lifetime does,
experimentally, not increase with increasing
excitation energy (regime of overlapping
resonances)
Experiment: Kanter et al, Nucl.Phys.A 299, 230 (1978),
Theoretical explanation by means of a dynamical phase

transition: Rotter, Rep.Prog.Phys. 54, 635 (1991);

J.Phys.A 42, 153001 (2009)

I reduced neutron widths do, experimentally,
not follow the Porter-Thomas distribution
Koehler et al, Phys.Rev.Lett. 105, 072502 (2010)



Nuclear physics:

State of the art 2011



Dynamical phase transitions prove Bohr’s
statement

a dynamical phase transition takes place in
the regime of overlapping resonances

The properties of low-lying nuclear states
(described by the shell model)

and those of highly excited nuclear states
(described by random ensembles)

differ fundamentally from one another
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