
Anjana  Sinha
Dept. of Applied Mathematics

Calcutta University, Kolkata, India

Classical mechanical 
systems with complex 

potentials

1



Outline of Talk :
1. Motivation to study such systems

2. Brief Introduction to the Technique followed

3. Extension to complex classical systems

4. Obtain expressions for classical trajectories, 
classical momenta and phase space 
trajectories, for a couple of explicit examples

5. Plots of trajectories & momenta

6. Discussions
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Work based on :

A. Sinha, D. Dutta and P. Roy,

Phys. Lett. A, vol 375, 2011, pg 452 - 457
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Q. Why study complex classical mechanics ?

As an effort to understand the classical limit of complex  

quantum theories.

In the study of complex classical systems, the complex as well

as the real solutions to Hamilton's differential equations of 

motion are considered. 

In this generalization of conventional classical mechanics, 

classical particles are not constrained to move along the real 

axis and may travel through the complex plane.
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Motivation behind extension of classical mechanics 

into the complex domain
To enhance one's understanding of the subtle mathematical 

phenomena that real physical systems can exhibit. E.g.

1. Some of the complicated properties of chaotic systems become 

more transparent when extended into the complex domain.

2. Studies of exceptional points of complex systems have revealed 

interesting and potentially observable effects . 

3. The prospect of understanding the nature of tunneling.



Classical 
Mechanics

Quantum 
Mechanics

Momentum

Position

Classical – Quantum Correspondence :

Any insight into the classical motion of  complex (nH) systems ?
6



PT -symmetric classical mechanics —

strange dynamics of a classical particle subject
to complex forces

Describes the properties of the corresponding 
classical theory that underlies the quantum 
mechanical theory described by a non Hermitian 
PT –symmetric Hamiltonian 

Gives the motion of a particle that feels complex 
forces and responds by moving about in the 
complex plane 7
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Any connection between
• the reality of the spectrum and 

• the regularity of the classical trajectories ?

Observations from previous works (mainly numerical) :

Closed periodic orbits for unbroken PT symmetry

Open orbits for broken PT symmetry (except special cases)

No trajectory may cross

Time period same for each orbit

Orbits symmetric wrt PT (reflections about imaginary axis)



Classical Hamiltonian

Poisson bracket
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Eqns of motion follow from Hamilton’s eqns
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Motion of a classical particle that feels complex 

forces, and moves in the complex plane, is given by

• velocity

• Classical turning points
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Conventional classical mechanics : 

the only possible initial positions for the particle are on 

the real-x axis between the turning points because the 

velocity is real ; all other points on the real axis belong 

to the so-called classically forbidden region. 

However, because we are analytically continuing 

classical mechanics into the complex plane, we can 

choose any point in the complex plane as an initial 

position



• Factorization Technique
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S. Kuru & J. Negro Annals of Physics 323 (2008) p 
413–431

In usual factorizations in QM,   γ(H) is factorization 

energy.    In this approach,  γ(H) may depend on H

In this approach, time-dependent integrals of motion 

are used to study stationary systems
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The Hamiltonians that allow for this treatment are 

classical analogues of some quantum systems. The 

algebraic structure of these quantum and classical 

systems are similar, but with some differences.

are assumed to define a deformed algebra
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The auxiliary functions   α(H),   β(H) and  φ(H) are 

expressed in terms of the powers of √H

In case the quantum version admits bound states with 

negative energies,  √H should be replaced by  √−H
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Making use of the equations of motion  and deformed 

algebra relations we arrive at the following expressions :
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Construct   2   quantities

which are time dependent integrals of motion. 

Nevertheless, their total time derivative vanishes
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Thus

Particular values

where

is determined from initial conditions
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For   c(E) to   be   real, 

gives the trajectories  x(t) and  momenta  p(t)

of  the corresponding classical particle in the 
complex plane. 

This condition gives the range of energy

values for the classical particle. 

The  solutions  of 
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Quantum version displays : 
1. Real, discrete spectrum below PT threshold, 
above which complex conjugate pairs of E

2. Continuous spectrum admits spectral 
singularity at the critical point, where R and T
tend to diverge.

Explicit examples : exactly solvable models both in 
quantum & classical versions

• Classical analogue of Complex Scarf  II potn
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Study restricted to bound states only, hence, 
negative  energies (E < 0) 

Final  expression  for  V (x)

Energy values are continuous for both bound 

and unbounded motion states
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Real δ : Real V(x) 

Im δ  :   PT symmetric V(x) 

Complex  δ : General Complex V(x) 

(neither PT sym nor η-pseudo-Hermitian)

The parameter δ plays a crucial role
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For

In the expression 
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Particular choice

so that 
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Range of values for E as c(E) should be real. 

Case 1 : δ is real         δ = δR

Real Scarf II potential
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Case 2 : δ is pure imaginary    δ = iδI

PT symmetric Scarf II potential

Real E : exact PT sym

Complex conj  E : spon brkn  PT

Classical system  undergoes phase transition at 
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Classical   trajectories

Classical   momenta
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PT symmetric Scarf II potential : δ = i δI

Real energy : Unbroken or exact PT symmetry

Classical turning points at

Hence symmetric wrt imaginary axis
For α0 = 2 , δ = 2i , γ0 = 6,     − 0.763932  >  E  >  − 5.23607

z = ± 0.781368 – 0.528945 i  , ± 0.781368 – 2.61265 i , etc
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Time Period
same for each

orbit

Plots symmetric 
wrt   im   axis
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Classical   momenta   --- plots sym wrt real axis
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Phase Space 

Trajectory

for unbroken 

PT symmetry



Velocity profile for 
unbroken PT phase

Velocity profile for 
spontaneously 
broken PT phase
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Open Orbits : Spontaneously broken PT

Turning points no longer of the form   z, -z*
i.e.  no  longer  symmetric  wrt  Im  axis

α0 = 2,  δ = 2i,  γ0 = 3
E should  lie  between  − 1.5 + 1.32288 i   and − 1.5 − 1.32288 i

Plots  for   E = − 1.5 − 0.3i

x = − 0.681374 + 0.5 i,  − 0.681374 − 2.64159 i, 
1.08137  + 0.5 i,     1.08137    + 3.64159 i
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Phase Space 

Trajectory

for broken 

PT symmetry
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• Complex Scarf II potential :

not η-pseudo Hermitian either

Energies are complex but not complex conjugate pairs

For   α = 2 ,  γ0 = 3 ,   δ = 1 + i

−3.12179 − 0.616603i  <  E  <  0

For   E = – 2 – 0.5 i

Classical turning points at 
z  =  − 1.15046 − 0.227512 i ,   − 0.217307 − 2.82999 i  ,     

0.217307 − 0.311604 i  ,    1.15046 − 2.91408 i , etc
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Open orbits : 
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• Classical analogue of an η-pseudo Hermitian Quantum Model

Eq of orbit

Quantum version shows no abrupt phase transition

classical version shows no irregular behaviour

Model PT sym if reflection considered about 
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α = 2 , σ = 0.2 ,

Time Period for each orbit same



CONCLUSIONS :

We have studied exactly solvable classical analogues of 
some exactly solvable, non Hermitian quantum 
mechanical Hamiltonians , 

• with the help of factorization technique

• obtained expressions for classical orbit, momenta

• plotted the classical orbits, momenta, 

• Phase Transition from real energies to complex    
conjugate pairs, in certain non Hermitian PT sym 
systems, is observed in classical systems as well
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For PT symmetric systems

• Below PT threshold (Real energy) 
• closed trajectories
• same time period for each orbit
• momentum curves closed and regular
• regular phase space trajectories
• orbits sym wrt imaginary axis

• Beyond critical point (Complex energy)
• open orbits
• trajectories do not cross
• no sym wrt either real or imaginary axis

• For general complex system, without PT sym
• trajectories may cross



T h a n k   Y o u
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