

Introduction

New solutions for antilinear deformations of Coxeter groups with applications to Calogero models

Monique Smith

Dresden, 23rd of June 2011

based on collaborations with Andreas Fring

- Operators invariant under antilinear transformations possess real eigenvalues when their eigenfunctions respect this symmetry.
- ullet \mathcal{PT} -symmetry together with a Hamiltonian eg.

$$\mathcal{H}_{C}(p,q) = rac{p^2}{2} + rac{\omega^2}{4} \sum_{lpha \in \Delta^+} (lpha \cdot q)^2 + \sum_{lpha \in \Delta^+} rac{g_lpha}{(lpha \cdot q)^2},$$

is such a symmetry.

 Focus on antilinear symmetries in general → usually realized on dynamical variables or fields.

¹ E. Wigner, Normal form of antiunitary operators, J. Math. Phys. 1 409-13, 1960

Today

- \bullet Build systematic construction of $\mathcal{PT}\text{-symmetric}$ deformed root systems Based on
 - i A. Fring and M. Znojil, PT-symmetric deformations of Calogero models, J. Phys. A41, 194010(17)(2008)
 - ii A. Fring and M. Smith, Antilinear deformations of Coxeter groups, an application to Calogero models. J. Phys. A43, 325201(28)(2010)
 - iii A. Fring and M. Smith, PT invariant complex E₈ root spaces. Int. J. oh Theor. Phys. 50, 974-981 (2011)
- No solution for some of these maps in ii, extend construction to fill gaps
- Apply deformed root systems to generalized Calogero model

Introduction

General mathematical framework

Construct complex extended root systems $\tilde{\Delta}(\varepsilon)$ invariant under a new antilinear involutary map.

- Simple roots : $\alpha_i \in \Delta \subset \mathbb{R}^n \mapsto \tilde{\alpha}_i \in \tilde{\Delta}(\varepsilon) \in \mathbb{R}^n \oplus i \mathbb{R}^n$, $\varepsilon \in \mathbb{R}$
- Linear map : $\delta : \Delta \mapsto \Delta(\varepsilon)$
- $\tilde{\Delta}(\varepsilon)$ invariant under an antilinear transformation ω

Introduction

General mathematical framework

Construct complex extended root systems $\tilde{\Delta}(\varepsilon)$ invariant under a new antilinear involutary map.

- Simple roots : $\alpha_i \in \Delta \subset \mathbb{R}^n \mapsto \tilde{\alpha}_i \in \tilde{\Delta}(\varepsilon) \in \mathbb{R}^n \oplus i\mathbb{R}^n$, $\varepsilon \in \mathbb{R}$
- Linear map : $\delta : \Delta \mapsto \tilde{\Delta}(\varepsilon)$ relating: $\alpha \mapsto \tilde{\alpha} = \theta_{\varepsilon} \alpha$
- $\tilde{\Delta}(\varepsilon)$ invariant under an antilinear transformation ω

Construct complex extended root systems $\tilde{\Delta}(\varepsilon)$ invariant under a new antilinear involutary map.

- Simple roots : $\alpha_i \in \Delta \subset \mathbb{R}^n \mapsto \tilde{\alpha}_i \in \tilde{\Delta}(\varepsilon) \in \mathbb{R}^n \oplus i\mathbb{R}^n$, $\varepsilon \in \mathbb{R}$
- Linear map : $\delta : \Delta \mapsto \tilde{\Delta}(\varepsilon)$ relating : $\alpha \mapsto \tilde{\alpha} = \theta_{\varepsilon}\alpha$
- $\tilde{\Delta}(\varepsilon)$ invariant under an antilinear transformation ω
 - (i) $\omega : \tilde{\alpha} = \mu_1 \alpha_1 + \mu_2 \alpha_2 \mapsto \mu_1^* \omega \alpha_1 + \mu_2^* \omega \alpha_2$ for $\mu_1, \mu_2 \in \mathbb{C}$
 - (ii) $\omega^2 = \mathbb{I}$
 - (iii) $\omega: \tilde{\Delta} \to \tilde{\Delta}$.

General mathematical framework

Various candidates for parity transformation:

- Weyl reflections $\sigma_i(x) := x 2 \frac{x \cdot \alpha_i}{\alpha_i^2} \alpha_i$ with $1 \le i \le \ell$
- Longest element

$$\omega_0 = \begin{cases} \sigma^{\frac{h}{2}} & \text{if heven} \\ \sigma_+ \sigma^{\frac{h-1}{2}} & \text{if hodd} \end{cases}$$

• Factors of Coxeter element $\sigma = \prod_{i=1}^{\ell} \sigma_i$

These candidates together with \mathcal{T} time reversal then constitute the analogue of a \mathcal{PT} -operator.

Concentrate on deforming factors of the Coxeter element.

Introduction

General mathematical framework

 σ_i do not generally commute.

Two disjoint sets V_{\pm} of simple roots α_i

$$\sigma := \sigma_{-}\sigma_{+}$$
 with $\sigma_{\pm} := \prod_{i \in V_{+}} \sigma_{i}$ with $\sigma_{\pm}^{2} = 1$

Elements in each set commutes with other elements in the same set.

Introduction

General mathematical framework

 σ_{+} analogue to parity transformations.

$$\sigma_{\pm}^{\varepsilon} := \theta_{\varepsilon} \sigma_{\pm} \theta_{\varepsilon}^{-1} = \tau \sigma_{\pm} : \quad \tilde{\Delta}(\varepsilon) \mapsto \tilde{\Delta}(\varepsilon)$$

And then deformed Coxeter element:

$$\sigma_{\varepsilon} := \theta_{\varepsilon} \sigma \theta_{\varepsilon}^{-1} = \sigma_{-}^{\varepsilon} \sigma_{+}^{\varepsilon} = \tau \sigma_{-} \tau \sigma_{+} = \tau^{2} \sigma_{-} \sigma_{+} = \sigma : \quad \tilde{\Delta}(\varepsilon) \mapsto \tilde{\Delta}(\varepsilon)$$

ie. σ_{ε} acts on $\tilde{\Delta}$ in the same way as σ on Δ .

This means
$$[\sigma, \theta_{\varepsilon}] = 0$$

General mathematical framework

Deformed Coxeter orbits:

$$\Omega_i^{\varepsilon} := \left\{ \tilde{\gamma}_i, \sigma_{\varepsilon} \tilde{\gamma}_i, \sigma_{\varepsilon}^2 \tilde{\gamma}_i, \dots, \sigma_{\varepsilon}^{h-1} \tilde{\gamma}_i \right\} = \theta_{\varepsilon} \Omega_i$$

with $\tilde{\gamma}_i = c_i \tilde{\alpha}_i, \ c_i = \pm \ \text{for} \ i \in V_{\pm}$

Deformed root space:

$$\tilde{\Delta}(\varepsilon) := \bigcup_{i=1}^{\ell} \Omega_i^{\varepsilon} = \theta_{\varepsilon} \Delta$$

invariance:

$$\sigma_{\pm}^{\varepsilon}: \tilde{\Delta}(\varepsilon) \to \theta_{\varepsilon} \sigma_{\pm} \theta_{\varepsilon}^{-1} \tilde{\Delta}(\varepsilon) = \theta_{\varepsilon} \sigma_{\pm} \Delta = \theta_{\varepsilon} \Delta = \tilde{\Delta}(\varepsilon)$$

Demand one-to-one relation between individual roots

• limit lim

$$\lim_{\varepsilon \to 0} \tilde{\alpha}_i(\varepsilon) = \alpha_i \qquad \lim_{\varepsilon \to 0} \tilde{\Delta}(\varepsilon) = \Delta$$

General mathematical framework

Deformed Coxeter orbits:

$$\Omega_i^{\varepsilon} := \left\{ \tilde{\gamma}_i, \sigma_{\varepsilon} \tilde{\gamma}_i, \sigma_{\varepsilon}^2 \tilde{\gamma}_i, \dots, \sigma_{\varepsilon}^{h-1} \tilde{\gamma}_i \right\} = \theta_{\varepsilon} \Omega_i$$

with $ilde{\gamma}_i = c_i ilde{lpha}_i, \ c_i = \pm \ ext{for} \ i \in V_\pm$

Deformed root space:

$$\tilde{\Delta}(\varepsilon) := \bigcup_{i=1}^{\ell} \Omega_i^{\varepsilon} = \theta_{\varepsilon} \Delta$$

invariance:

$$\sigma_{\pm}^{\varepsilon}: \tilde{\Delta}(\varepsilon) \to \theta_{\varepsilon} \sigma_{\pm} \theta_{\varepsilon}^{-1} \tilde{\Delta}(\varepsilon) = \theta_{\varepsilon} \sigma_{\pm} \Delta = \theta_{\varepsilon} \Delta = \tilde{\Delta}(\varepsilon)$$

Demand one-to-one relation between individual roots

$$\lim_{\varepsilon \to 0} \tilde{\alpha}_i(\varepsilon) = \alpha_i \qquad \lim_{\varepsilon \to 0} \tilde{\Delta}(\varepsilon) = \Delta$$

General mathematical framework

Deformed Coxeter orbits:

$$\Omega_i^{\varepsilon} := \left\{ \tilde{\gamma}_i, \sigma_{\varepsilon} \tilde{\gamma}_i, \sigma_{\varepsilon}^2 \tilde{\gamma}_i, \dots, \sigma_{\varepsilon}^{h-1} \tilde{\gamma}_i \right\} = \theta_{\varepsilon} \Omega_i$$

with $\tilde{\gamma}_i = c_i \tilde{\alpha}_i$, $c_i = \pm$ for $i \in V_{\pm}$

Deformed root space:

$$\tilde{\Delta}(\varepsilon) := \bigcup_{i=1}^{\ell} \Omega_i^{\varepsilon} = \theta_{\varepsilon} \Delta$$

invariance:

$$\sigma_{\pm}^{\varepsilon}: \tilde{\Delta}(\varepsilon) \to \theta_{\varepsilon} \sigma_{\pm} \theta_{\varepsilon}^{-1} \tilde{\Delta}(\varepsilon) = \theta_{\varepsilon} \sigma_{\pm} \Delta = \theta_{\varepsilon} \Delta = \tilde{\Delta}(\varepsilon)$$

Demand one-to-one relation between individual roots

• limit $\lim_{\varepsilon \to 0}$:

$$\lim_{\varepsilon \to 0} \tilde{\alpha}_i(\varepsilon) = \alpha_i \qquad \lim_{\varepsilon \to 0} \tilde{\Delta}(\varepsilon) = \Delta$$

Introduction

General mathematical framework

Invariant kinetic term in Hamiltonian

$$\alpha_i \cdot \alpha_j = \tilde{\alpha}_i \cdot \tilde{\alpha}_j.$$

 $\Rightarrow \theta_{\varepsilon}$ isometry

$$\theta_{\varepsilon}^* = \theta_{\varepsilon}^{-1}$$
 and

 $\det heta_arepsilon = \pm 1$

Summary: properties of θ

(i)
$$\theta_{\varepsilon}^* \sigma_{\pm} = \sigma_{\pm} \theta_{\varepsilon}$$

(ii)
$$[\sigma, \theta_{\varepsilon}] = 0$$

(iii)
$$\theta_{\varepsilon}^* = \theta_{\varepsilon}^{-1}$$

(iv)
$$\det \theta_{\varepsilon} = \pm 1$$

(v)
$$\lim_{\varepsilon \to 0} \theta_{\varepsilon} = \mathbb{I}$$

 $\det \theta_{\varepsilon} = \pm 1$

General mathematical framework

General mathematical framework

Invariant kinetic term in Hamiltonian

$$\alpha_i \cdot \alpha_j = \tilde{\alpha}_i \cdot \tilde{\alpha}_j.$$

 $\Rightarrow \theta_{\varepsilon}$ isometry

$$\theta_{\varepsilon}^* = \theta_{\varepsilon}^{-1}$$
 and

Summary: properties of θ_{ε}

(i)
$$\theta_{\varepsilon}^* \sigma_{\pm} = \sigma_{\pm} \theta_{\varepsilon}$$

(ii)
$$[\sigma, \theta_{\varepsilon}] = 0$$

(iii)
$$\theta_{\varepsilon}^* = \theta_{\varepsilon}^{-1}$$

(iv)
$$\det \theta_{\varepsilon} = \pm 1$$

(v)
$$\lim_{\varepsilon \to 0} \theta_{\varepsilon} = \mathbb{I}$$

General mathematical framework

Invariant kinetic term in Hamiltonian

$$\alpha_i \cdot \alpha_j = \tilde{\alpha}_i \cdot \tilde{\alpha}_j.$$

 $\Rightarrow \theta_{\varepsilon}$ isometry

$$\theta_{\varepsilon}^* = \theta_{\varepsilon}^{-1}$$
 and

 $\det \theta_{\varepsilon} = \pm 1$

Summary: properties of θ_{ε}

(i)
$$\theta_{\varepsilon}^* \sigma_{\pm} = \sigma_{\pm} \theta_{\varepsilon}$$

(ii)
$$[\sigma, \theta_{\varepsilon}] = 0$$

(iii)
$$\theta_{\varepsilon}^* = \theta_{\varepsilon}^{-1}$$

(iv)
$$\det \theta_{\varepsilon} = \pm 1$$

(v)
$$\lim_{\varepsilon \to 0} \theta_{\varepsilon} = \mathbb{I}$$

Solutions?

General mathematical framework

 $\because [\sigma, \theta_{\varepsilon}] = 0$, make Ansatz:

$$\theta_{\varepsilon} = \sum\nolimits_{k=0}^{h-1} c_k(\varepsilon) \sigma^k, \qquad \lim_{\varepsilon \to 0} c_k(\varepsilon) = \left\{ \begin{array}{ll} 1 & k=0 \\ 0 & k \neq 0 \end{array} \right., \ c_k(\varepsilon) \in \mathbb{C}$$

$$\Rightarrow$$
 into $heta_arepsilon^*\sigma_\pm=\sigma_\pm heta_arepsilon$ ($c_0=\mathit{r_0},\,c_{h/2}=\mathit{r_{h/2}},\,c_k=\imath\mathit{r_k}$ otherwise)

$$\theta_{\varepsilon} = \begin{cases} r_0(\varepsilon)\mathbb{I} + i \sum_{k=1}^{(h-1)/2} r_k(\varepsilon)(\sigma^k - \sigma^{-k}) & h \text{ odd,} \\ r_0(\varepsilon)\mathbb{I} + r_{h/2}(\varepsilon)\sigma^{h/2} + i \sum_{k=1}^{h/2-1} r_k(\varepsilon)(\sigma^k - \sigma^{-k}) & h \text{ even} \end{cases}$$

General mathematical framework

 $:: [\sigma, \theta_{\varepsilon}] = 0$, make Ansatz:

$$\theta_{\varepsilon} = \sum_{k=0}^{h-1} c_k(\varepsilon) \sigma^k, \qquad \lim_{\varepsilon \to 0} c_k(\varepsilon) = \begin{cases} 1 & k=0 \\ 0 & k \neq 0 \end{cases}, \ c_k(\varepsilon) \in \mathbb{C}$$

 \Rightarrow into $heta_{arepsilon}^*\sigma_{\pm}=\sigma_{\pm} heta_{arepsilon}$ $(c_0=r_0,\,c_{h/2}=r_{h/2},\,c_k=\imath r_k$ otherwise)

$$\theta_{\varepsilon} = \left\{ \begin{array}{ll} r_0(\varepsilon)\mathbb{I} + \imath \sum\limits_{k=1}^{(h-1)/2} r_k(\varepsilon) (\sigma^k - \sigma^{-k}) & h \text{ odd,} \\ r_0(\varepsilon)\mathbb{I} + r_{h/2}(\varepsilon) \sigma^{h/2} + \imath \sum\limits_{k=1}^{h/2-1} r_k(\varepsilon) (\sigma^k - \sigma^{-k}) & h \text{ even.} \end{array} \right.$$

Introduction

General mathematical framework

Computing θ_{ε} for all Coxeter groups we find:

- Found closed solutions for A_{4n-1} , B_{2n} , C_{2n} , D_{2n+1} , $E_{6.8}$, G_2 .
- No closed formulae for rest of An
- B_{2n+1} , C_{2n+1} , D_{2n} , E_7 , H_3 showed that no non trivial solution exists for θ_{ε}

Presented in A. Fring and M. Smith, Antilinear deformations of Coxeter groups, an application to Calogero models. J. Phys. A43, 325201(28)(2010)

General mathematical framework

New modified construction to find solutions where none existed before · · ·

Do this by looking at arbitrary element of the Coxeter group $\tilde{\sigma}=\prod\limits_{i}\sigma_{i}$, and following the same procedure as for σ with

$$\tilde{\sigma}_{\pm} := \sigma_{\pm} \prod_{i \in \tilde{V}_{\pm}} \sigma_i$$

and since the $\tilde{\sigma}$ is smaller than σ , $\tilde{h} < h$ which leads to the deformation matrix

$$ilde{ heta}_arepsilon = \left\{ egin{array}{ll} r_0(arepsilon) \mathbb{I} + \imath \sum_{k=1}^{(ilde{h}-1)/2} r_k(arepsilon) (ilde{\sigma}^k - ilde{\sigma}^{-k}) & ilde{h} ext{ odd,} \ r_0(arepsilon) \mathbb{I} + r_{ ilde{h}/2}(arepsilon) ilde{\sigma}^{ ilde{h}/2} + \imath \sum_{k=1}^{ ilde{h}/2-1} r_k(arepsilon) (ilde{\sigma}^k - ilde{\sigma}^{-k}) & ilde{h} ext{ even.} \end{array}
ight.$$

General mathematical framework

- Now more than just one $\tilde{\sigma}$ for each ℓ
- Can solve $det(\tilde{\theta}_{\varepsilon}) = 1$
- $\tilde{\sigma}$ can be divided into different similarity classes $\Sigma_{\tilde{s}}$ characterized by modified exponents \tilde{s} of $\tilde{\sigma}$

$$\tilde{\boldsymbol{s}} = \{\tilde{\boldsymbol{s}}_{1}^{\lambda_{1}}, \tilde{\boldsymbol{s}}_{2}^{\lambda_{2}}, \cdots, \tilde{\boldsymbol{s}}_{\tilde{h}-1}^{\lambda_{\tilde{h}-1}}, \tilde{\boldsymbol{s}}_{\tilde{h}}^{\lambda_{\tilde{h}}}\}$$

$$ilde{h}=4$$
 then $r_1=\sqrt{r_0^2-r_0}$ and $r_2=1-r_0$ giving

$$\tilde{\theta}_{\varepsilon} = r_0(\varepsilon)\mathbb{I} + (1 - r_0(\varepsilon))\tilde{\sigma}^2 + i\sqrt{r_0^2(\varepsilon) - r_0(\varepsilon)}(\tilde{\sigma} - \tilde{\sigma}^{-1})$$

For A_{ℓ} the simplest similarity class is

$$\Sigma_{\{1,2,3,4^{\ell-3}\}} = \{\tilde{\sigma}^{(1)}, \cdots, \tilde{\sigma}^{(\ell-2)}\}$$

$$\tilde{\sigma}^{(i)} = \sigma_{i+1}\sigma_i\sigma_{i+2}$$
 with $i = 1, \dots, \ell - 2$

Can be generalized for $\tilde{h} = 4n$

$$\tilde{\sigma}^{(n,i)} = \left[\left(\prod_{k=2}^{n} \sigma_{i-1+4(k-1)} \sigma_{i+1+4(k-1)} \right) \sigma_{i+1} \left(\prod_{k=1}^{n} \sigma_{i+4(k-1)} \sigma_{i+2+4(k-1)} \right) \right]$$

Other similarity classes become more complicated such as

$$\Sigma_{\{1,2^2,3,4^{\ell-4}\}}$$
 with $\tilde{\sigma}^{(i,j)} = \sigma_i \sigma_{i+2} \sigma_{i+3+j} \sigma_{i+1}$

Application to Calogero models

• Undeformed Calogero Hamiltonian

$$\mathcal{H}_{\mathcal{C}}(p,q) = \frac{p^2}{2} + \frac{\omega^2}{4} \sum_{\alpha \in \Delta^+} (\alpha \cdot q)^2 + \sum_{\alpha \in \Delta^+} \frac{g_\alpha}{(\alpha \cdot q)^2},$$

define the variables

$$z := \prod_{\alpha \in \Lambda^+} (\alpha \cdot q)$$
 and $r^2 := \frac{1}{\hat{h}t_\ell} \sum_{\alpha \in \Lambda^+} (\alpha \cdot q)^2$,

 $\hat{h} \equiv$ dual Coxeter number, $t_\ell \equiv \ell$ -th symmetrizer of t

• Ansatz for solution to $\mathcal{H}_C\psi(q)=E\psi(q)$

$$\psi(q) \rightarrow \psi(z,r) = z^{\kappa+1/2} \varphi(r)$$

 \Rightarrow solution for $\kappa = 1/2\sqrt{1+4g}$

$$\varphi_n(r) = c_n \exp\left(-\sqrt{\frac{\hat{h}t_\ell}{2}} \frac{\omega}{2} r^2\right) L_n^a \left(\sqrt{\frac{\hat{h}t_\ell}{2}} \omega r^2\right)$$

Application to Calogero models

• Undeformed Calogero Hamiltonian

$$\mathcal{H}_{\mathcal{C}}(p,q) = rac{p^2}{2} + rac{\omega^2}{4} \sum_{lpha \in \Delta^+} (lpha \cdot q)^2 + \sum_{lpha \in \Delta^+} rac{g_lpha}{(lpha \cdot q)^2},$$

define the variables

$$z:=\prod_{lpha\in\Delta^+}(lpha\cdot q)$$
 and $r^2:=rac{1}{\hat{h}t_\ell}\sum_{lpha\in\Delta^+}(lpha\cdot q)^2,$

 $\hat{h}\equiv$ dual Coxeter number, $t_\ell\equiv\ell$ -th symmetrizer of I

• Ansatz for solution to $\mathcal{H}_C\psi(q)=E\psi(q)$

$$\psi(q) \to \psi(z,r) = z^{\kappa+1/2} \varphi(r)$$

 \Rightarrow solution for $\kappa = 1/2\sqrt{1+4g}$.

$$arphi_n(r) = c_n \exp\left(-\sqrt{rac{\hat{h}t_\ell}{2}} rac{\omega}{2} r^2
ight) L_n^a \left(\sqrt{rac{\hat{h}t_\ell}{2}} \omega r^2
ight)$$

Application to Calogero models

• Undeformed Calogero Hamiltonian

$$\mathcal{H}_{\mathcal{C}}(p,q) = rac{p^2}{2} + rac{\omega^2}{4} \sum_{lpha \in \Delta^+} (lpha \cdot q)^2 + \sum_{lpha \in \Delta^+} rac{g_lpha}{(lpha \cdot q)^2},$$

define the variables

$$z:=\prod_{lpha\in\Delta^+}(lpha\cdot q)$$
 and $r^2:=rac{1}{\hat{h}t_\ell}\sum_{lpha\in\Delta^+}(lpha\cdot q)^2,$

 $\hat{h} \equiv$ dual Coxeter number, $t_{\ell} \equiv \ell$ -th symmetrizer of I

• Ansatz for solution to $\mathcal{H}_C\psi(q)=E\psi(q)$

$$\psi(q) \rightarrow \psi(z,r) = z^{\kappa+1/2} \varphi(r)$$

 \Rightarrow solution for $\kappa = 1/2\sqrt{1+4g}$.

$$arphi_n(r) = c_n \exp\left(-\sqrt{rac{\hat{h}t_\ell}{2}}rac{\omega}{2}r^2
ight)L_n^a\left(\sqrt{rac{\hat{h}t_\ell}{2}}\omega r^2
ight).$$

Application to Calogero models

eigenenergies

$$E_n = \frac{1}{4} \left[\left(2 + h + h\sqrt{1 + 4g} \right) I + 8n \right] \sqrt{\frac{\hat{h}t_{\ell}}{2}} \omega$$

• anyonic exchange factors

$$\psi(q_1,\ldots,q_i,q_j,\ldots q_n)=e^{i\pi s}\psi(q_1,\ldots,q_j,q_i,\ldots q_n),\quad \text{for } 1\leq i,j\leq n,$$

with

$$s=\frac{1}{2}+\frac{1}{2}\sqrt{1+4g}$$

∴ r is symmetric and z antisymmetric

Application to Calogero models

The construction is based on the identities:

$$egin{array}{lcl} \sum_{lpha,eta\in\Delta^+}rac{lpha\cdoteta}{(lpha\cdotoldsymbol{q})}&=&\sum_{lpha\in\Delta^+}rac{lpha^2}{(lpha\cdotoldsymbol{q})^2},\ &\sum_{lpha,eta\in\Delta^+}(lpha\cdoteta)rac{(lpha\cdotoldsymbol{q})}{(eta\cdotoldsymbol{q})}&=&rac{\hat{h}h\ell}{2}t_\ell,\ &\sum_{lpha,eta\in\Delta^+}(lpha\cdoteta)\,(lpha\cdotoldsymbol{q})(eta\cdotoldsymbol{q})&=&\hat{h}t_\ell\sum_{lpha\in\Delta^+}(lpha\cdotoldsymbol{q})^2,\ &\sum_{lpha\in\Delta^+}lpha^2&=&\ell\hat{h}t_\ell. \end{array}$$

Strong evidence on a case-by-case level, but no rigorous proof.

Application to Calogero models

• antilinearly deformed Calogero Hamiltionian

$$\mathcal{H}_{adC}(p,q) = \frac{p^2}{2} + \frac{\omega^2}{4} \sum_{\tilde{\alpha} \in \tilde{\Delta}^+} (\tilde{\alpha} \cdot q)^2 + \sum_{\tilde{\alpha} \in \Delta^+} \frac{g_{\tilde{\alpha}}}{(\tilde{\alpha} \cdot q)^2}$$

define the variables

$$ilde{z} := \prod_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q) \qquad ext{and} \qquad ilde{r}^2 := rac{1}{\hat{h} t_\ell} \sum_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q)^2$$

• Ansatz for solution to $\mathcal{H}_C\psi(q)=E\psi(q)$

$$\psi(\mathbf{q}) \to \psi(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi(\tilde{\mathbf{r}})$$

when identies still hold =

$$\psi(\mathbf{q}) = \psi(\tilde{\mathbf{z}}, \mathbf{r}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi_{\mathbf{n}}(\mathbf{r})$$

Application to Calogero models

• antilinearly deformed Calogero Hamiltionian

$$\mathcal{H}_{adC}(p,q) = \frac{p^2}{2} + \frac{\omega^2}{4} \sum_{\tilde{\alpha} \in \tilde{\Delta}^+} (\tilde{\alpha} \cdot q)^2 + \sum_{\tilde{\alpha} \in \Delta^+} \frac{g_{\tilde{\alpha}}}{(\tilde{\alpha} \cdot q)^2}$$

define the variables

$$ilde{z} := \prod_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q) \qquad ext{and} \qquad ilde{r}^2 := rac{1}{\hat{h}t_\ell} \sum_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q)^2.$$

• Ansatz for solution to $\mathcal{H}_C\psi(q)=E\psi(q)$

$$\psi(\mathbf{q}) \to \psi(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi(\tilde{\mathbf{r}})$$

when identies still hold =

$$\psi(\mathbf{q}) = \psi(\tilde{\mathbf{z}}, \mathbf{r}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi_{\mathbf{n}}(\mathbf{r})$$

Application to Calogero models

antilinearly deformed Calogero Hamiltionian

$$\mathcal{H}_{adC}(p,q) = \frac{p^2}{2} + \frac{\omega^2}{4} \sum_{\tilde{\alpha} \in \tilde{\Delta}^+} (\tilde{\alpha} \cdot q)^2 + \sum_{\tilde{\alpha} \in \Delta^+} \frac{g_{\tilde{\alpha}}}{(\tilde{\alpha} \cdot q)^2}$$

define the variables

$$ilde{z} := \prod_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q) \qquad ext{and} \qquad ilde{r}^2 := rac{1}{\hat{h} t_\ell} \sum_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q)^2.$$

• Ansatz for solution to $\mathcal{H}_{\mathcal{C}}\psi(q) = \mathcal{E}\psi(q)$

$$\psi(\mathbf{q}) \to \psi(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi(\tilde{\mathbf{r}})$$

when identies still hold \Rightarrow

$$\psi(\mathbf{q}) = \psi(\tilde{\mathbf{z}}, \mathbf{r}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi_{\mathbf{n}}(\mathbf{r})$$

Application to Calogero models

• antilinearly deformed Calogero Hamiltionian

$$\mathcal{H}_{adC}(p,q) = \frac{p^2}{2} + \frac{\omega^2}{4} \sum_{\tilde{\alpha} \in \tilde{\Delta}^+} (\tilde{\alpha} \cdot q)^2 + \sum_{\tilde{\alpha} \in \Delta^+} \frac{g_{\tilde{\alpha}}}{(\tilde{\alpha} \cdot q)^2}$$

define the variables

$$ilde{z} := \prod_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q) \qquad ext{and} \qquad ilde{r}^2 := rac{1}{\hat{h} t_\ell} \sum_{ ilde{lpha} \in ilde{\Delta}^+} (ilde{lpha} \cdot q)^2.$$

• Ansatz for solution to $\mathcal{H}_{\mathcal{C}}\psi(q) = \mathcal{E}\psi(q)$

$$\psi(\mathbf{q}) \to \psi(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \tilde{\mathbf{z}}^{\mathbf{s}} \varphi(\tilde{\mathbf{r}})$$

when identies still hold \Rightarrow

$$\psi(q) = \psi(\tilde{z}, r) = \tilde{z}^s \varphi_n(r)$$

Application to Calogero models

Deformed B_3 -models

• potential $\sum_{\tilde{\alpha} \in \Delta^+} \frac{g_{\tilde{\alpha}}}{(\tilde{\alpha}, q)^2}$ from deformed Coxeter group factors $\alpha_1 = \{1, -1, 0\}, \alpha_2 = \{0, 1, -1\}, \alpha_3 = \{0, 0, 1\}$ $\tilde{\alpha}_1 \cdot a = a_1 - (1 - 2\kappa_0) q_2 - 2i\lambda_0 q_3$ $\tilde{\alpha}_2 \cdot q = (1 - 2\kappa_0)(q_2 - q_3) + 2i\lambda_0(q_2 + q_3)$ $\tilde{\alpha}_3 \cdot q = (1-2\kappa_0)q_3 - 2i\lambda_0q_2$ $\tilde{\alpha}_A \cdot a = q_1 - (1 - 2\kappa_0) q_3 + 2i\lambda_0 q_2$ $\tilde{\alpha}_5 \cdot q = (1 - 2\kappa_0)(q_2 + q_3) + 2i\lambda_0(q_3 - q_2)$ $\tilde{\alpha}_6 \cdot q = (1 - 2\kappa_0) q_2 + 2i\lambda_0 q_3$ $\tilde{\alpha}_7 \cdot q = q_1 + (1 - 2\kappa_0) q_2 + 2i\lambda_0 q_3$ $\tilde{\alpha}_8 \cdot q = q_1 + (1 - 2\kappa_0) q_3 - 2i\lambda_0 q_2$ $\tilde{\alpha}_{\mathbf{q}} \cdot \mathbf{q} = \mathbf{q}_{\mathbf{3}}$

Application to Calogero models

Deformed B_3 -models

• potential $\sum_{\tilde{\alpha} \in \Delta^+} \frac{g_{\tilde{\alpha}}}{(\tilde{\alpha}, q)^2}$ from deformed Coxeter group factors $\alpha_1 = \{1, -1, 0\}, \alpha_2 = \{0, 1, -1\}, \alpha_3 = \{0, 0, 1\}$ $\tilde{\alpha}_1 \cdot a = a_1 - (1 - 2\kappa_0) q_2 - 2i\lambda_0 q_3$ $\tilde{\alpha}_2 \cdot q = (1 - 2\kappa_0)(q_2 - q_3) + 2i\lambda_0(q_2 + q_3)$ $\tilde{\alpha}_3 \cdot q = (1-2\kappa_0)q_3 - 2i\lambda_0q_2$ $\tilde{\alpha}_A \cdot a = q_1 - (1 - 2\kappa_0) q_3 + 2i\lambda_0 q_2$ $\tilde{\alpha}_5 \cdot q = (1 - 2\kappa_0)(q_2 + q_3) + 2i\lambda_0(q_3 - q_2)$ $\tilde{\alpha}_6 \cdot q = (1 - 2\kappa_0) q_2 + 2i\lambda_0 q_3$ $\tilde{\alpha}_7 \cdot q = q_1 + (1 - 2\kappa_0) q_2 + 2i\lambda_0 q_3$ $\tilde{\alpha}_8 \cdot q = q_1 + (1 - 2\kappa_0) q_3 - 2i\lambda_0 q_2$ $\tilde{\alpha}_{\mathbf{q}} \cdot \mathbf{q} = \mathbf{q}_{\mathbf{3}}$

Application to Calogero models

ullet \mathcal{PT} -symmetry for $\tilde{\alpha}$

$$\begin{split} \sigma_{-}^{\varepsilon} &: \qquad \tilde{\alpha}_{1} \rightarrow \tilde{\alpha}_{1}, \, \tilde{\alpha}_{2} \rightarrow \tilde{\alpha}_{5}, \, \tilde{\alpha}_{3} \rightarrow -\tilde{\alpha}_{3}, \, \tilde{\alpha}_{4} \rightarrow \tilde{\alpha}_{8}, \, \tilde{\alpha}_{5} \rightarrow \tilde{\alpha}_{2}, \\ \tilde{\alpha}_{6} \rightarrow \tilde{\alpha}_{6}, \, \tilde{\alpha}_{7} \rightarrow \tilde{\alpha}_{7}, \, \tilde{\alpha}_{8} \rightarrow \tilde{\alpha}_{4}, \, \tilde{\alpha}_{9} \rightarrow \tilde{\alpha}_{9}, \\ \sigma_{+}^{\varepsilon} &: \qquad \tilde{\alpha}_{1} \rightarrow \tilde{\alpha}_{4}, \, \tilde{\alpha}_{2} \rightarrow -\tilde{\alpha}_{2}, \, \tilde{\alpha}_{3} \rightarrow \tilde{\alpha}_{6}, \, \tilde{\alpha}_{4} \rightarrow \tilde{\alpha}_{1}, \, \tilde{\alpha}_{5} \rightarrow \tilde{\alpha}_{5}, \\ \tilde{\alpha}_{6} \rightarrow \tilde{\alpha}_{3}, \, \tilde{\alpha}_{7} \rightarrow \tilde{\alpha}_{8}, \, \tilde{\alpha}_{8} \rightarrow \tilde{\alpha}_{7}, \, \tilde{\alpha}_{9} \rightarrow \tilde{\alpha}_{9}, \end{split}$$

PT-symmetry in dual space

$$egin{array}{lll} \sigma_-^arepsilon &:& q_1 o q_1,\,q_2 o q_2,\,q_3 o -q_3,\,\iota o -\imath,\ \sigma_+^arepsilon &:& q_1 o q_1,\,q_2 o q_3,\,q_3 o q_2,\,\iota o -\imath. \end{array}$$

- We have formed a systematic construction of an antilinear deformation employed as analogue to \mathcal{PT} deformation.
- We have found new models based on this deformation.
- Look at the other algebras.
- Find excited states of the wavefunction $\psi(x)$
- Investigate integrability of the new deformed models.

- We have formed a systematic construction of an antilinear deformation employed as analogue to \mathcal{PT} deformation.
- We have found new models based on this deformation.
- Look at the other algebras.
- Find excited states of the wavefunction $\psi(x)$
- Investigate integrability of the new deformed models.

- We have formed a systematic construction of an antilinear deformation employed as analogue to \mathcal{PT} deformation.
- We have found new models based on this deformation.
- Look at the other algebras.
- Find excited states of the wavefunction $\psi(x)$
- Investigate integrability of the new deformed models.

- We have formed a systematic construction of an antilinear deformation employed as analogue to \mathcal{PT} deformation.
- We have found new models based on this deformation.
- Look at the other algebras.
- Find excited states of the wavefunction $\psi(x)$
- Investigate integrability of the new deformed models.

- We have formed a systematic construction of an antilinear deformation employed as analogue to \mathcal{PT} deformation.
- We have found new models based on this deformation.
- Look at the other algebras.
- Find excited states of the wavefunction $\psi(x)$
- Investigate integrability of the new deformed models.

Thank you for your attention