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Introduction

@ Operators invariant under antilinear transformations
possess real eigenvalues when their eigenfunctions
respect this symmetry.

@ Non-Hermitian Hamiltonians admitting antilinear symmetry
— used to define consistent quantum mechanical systems
with real energy spectra

@ PT-symmetry together with a Hamiltonian eg.

’Hc(p,q)—f+f D> (a-9P+ Z

aEAT a€A+

is such a symmetry.

@ Focus on antilinear symmetries in general — usually
realized on dynamical variables or fields.

'E. Wigner, Normal form of antiunitary operators, J. Math. Phys. 1 409-13,
1960



Introduction

Today

@ Build systematic construction of P7-symmetric deformed
root systems
Based on

e i A. Fring and M. Znojil, PT -symmetric deformations of
Calogero models, J. Phys. A41, 194010(17)(2008)

e ii A. Fring and M. Smith, Antilinear deformations of Coxeter
groups, an application to Calogero models. J. Phys. A43,
325201(28)(2010)

e iii A. Fring and M. Smith, PT invariant complex Eg root
spaces. Int. J. oh Theor. Phys. 50, 974-981 (2011)

@ No solution for some of these maps in ii, extend
construction to fill gaps

@ Apply deformed root systems to generalized Calogero
model
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General mathematical framework

General mathematical framework

Construct complex extended root systems A(e) invariant under
a new antilinear involutary map.
@ Simpleroots : oj € A CR" — & € A(e) e R"@1R", e € R
@ Linearmap:d: A — A(e)
relating : a— a&=06.xa
@ A(e) invariant under an antilinear transformation w
(i) w:d=poq + peoo = pjway + pswap for py, pp € C
(i) w2 =1
(ifi) w: A — A.
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General mathematical framework

Various candidates for parity transformation:
O','(X) =X - 2LC;"C¥,'

Qi

@ Weyl reflections with 1 <i</
@ Longest element
h
o2 if heven
1

wo = _
7 00" if hodd

¢
@ Factors of Coxeter element o0 = [] o
i=1

These candidates together with 7 time reversal then constitute

the analogue of a PT-operator.
Concentrate on deforming factors of the Coxeter element.
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General mathematical framework

o; do not generally commute.

Qv (0%} Qp
Al: o—o—o --0—0

Two disjoint sets V.. of simple roots «;

o:=0_04y With o1 := H o with o2 =1
ieVy
Elements in each set commutes with other elements in the
same set.
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General mathematical framework

o+ analogue to parity transformations.

05 =0.0407" =701 : Ae) — Ae)

And then deformed Coxeter element:

0. = 0.00-" = o0l =T0_TO4 = 20_op =0 Ae)— Ae)

ie. 0. acts on A in the same way as o on A.
This means [0,6:]=0
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with ¥i = Ci&j, C; = % forie Vi
e Deformed root space:
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General mathematical framework

o Deformed Coxeter orbits:
Qj = {%05%052%’, e ,U?_Wi} = 0.0

with ¥i = Ci&j, C; = % forie Vi
e Deformed root space:

- ¢
Al) =] =06
e invariance:
0% A(e) = 0.000-TA(e) = .00 = 0.A = Ae)

Demand one-to-one relation between individual roots
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General mathematical framework

General mathematical framework

e Deformed Coxeter orbits:
5 = {51,050, 0%, ol i} = 0.0
with 4, = ¢ja;, ¢; =+ fori € Vi
e Deformed root space:
Ae) = UZ Qf =6.A
e invariance:
0% A(e) = 0.000-TA(e) = .00 = 0.A = Ae)
Demand one-to-one relation between individual roots

e limit lim:
e—0

lim é;(e) = o lim A(e) = A

e—0 e—0
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Invariant kinetic term in Hamiltonian

0:=6-" and  detf. = +1

Summary: properties of 6.

() 0ior =040
(i)  [0,0=0
(i) or =07
(iv)  deth, = +1
(v) lim.00:. =1
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General mathematical framework

Invariant kinetic term in Hamiltonian

0:=6-" and  detf. = +1

Summary: properties of 6.

() 0ior =040
(i)  [0,0=0
(i) or =07
(iv)  deth, = +1
(v) lim.00:. =1

Solutions?
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General mathematical framework

General mathematical framework

*. [0, 6] = 0, make Ansatz:

h—1 , 1 k=0
95 = Zk:o Ck(E)o‘k7 !m) Ck(g) = { 0 kK 75 0 Ck(&) eC

= into 020+ = 040:  (Co = Iy, Chy2 = I'nj2, Ck = 1k Otherwise)

(h—1)/2
REI+2 S r(e)(ok —oF) h odd,
0. = k=1

h/2—1
r0(e)I+ rhja(e)a™2 +4 S re(e)(eX — oK) heven.
k=1
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General mathematical framework

General mathematical framework

Computing 6. for all Coxeter groups we find:
@ Found closed solutions for As,_1, Bop, Cop, Dot 1, Es 8, Go.
@ No closed formulae for rest of Aj,

@ Boni1, Conit, Dop, E7, H3 showed that no non trivial
solution exists for 6,

Presented in A. Fring and M. Smith, Antilinear deformations of
Coxeter groups, an application to Calogero models. J. Phys.
A43, 325201(28)(2010)
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General mathematical framework

New modified construction to find solutions where none
existed before - - -

Do this by looking at arbitrary element of the Coxeter group
& =[] oi, and following the same procedure as for o with

1
O+ = 04 H oj
ieVi

and since the & is smaller than o, h < h
which leads to the deformation matrix

(h—1)/2 ~
rE)+2 > r(e)(6K — 575 h odd,
i k=1
O = 5 h/2—1 .
()l + 1y p(€)5"2 +10 Y0 ()6 —57%)  heven.
k=1

(1)
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General mathematical framework

@ Now more than just one & for each ¢
@ Can solve det(f.) = 1

@ & can be divided into different similarity classes ¥
characterized by modified exponents s of &

- - ~ ~ A7 ~
S:{)\1 /\2"'73]’7&71“3;,’7}

h=4thenr,=/r2—rpand =1 - r, giving

0. = (&) + (1 — 10())5% + 04/ 12() — ro(e)(6 — 57 1)
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General mathematical framework

For A, the simplest similarity class is

T CALSTRIN. )
5'(i) = 0410042 with = 1,--‘ ,6 -2
Can be generalized for h = 4n
) n n
F(mi) = [(H Ui_1+4(k_1)0i+1+4(k_1))0i+1(H Oita(k—1)0i+2+4(k—1))]
k=2 e

Other similarity classes become more complicated such as

. ~ i,' -
2{172273742—4} with U( J) — 00420 4+3+j0+1
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Generalization of Calogero’s solution, undeformed case

Application to Calogero models

e Undeformed Calogero Hamiltonian

HC(PKJ)—*JF* > (a-qf+ Z

aceAt ooEAJr
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Generalization of Calogero’s solution, undeformed case

Application to Calogero models

e Undeformed Calogero Hamiltonian

H(p,q——+—2aq +Z aq

aEAT aEAT
e define the variables
1
z:=[[(e-q) and rF:=- ) (a-q)
acAt htg aEA+

h = dual Coxeter number, t, = ¢-th symmetrizer of /
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Generalization of Calogero’s solution, undeformed case

Application to Calogero models

e Undeformed Calogero Hamiltonian

He(p, q —f+f2aq —I—Z aq

aEAT aEAT
e define the variables
1
z:=[[(e-q) and rF:=- ) (a-q)
acAt htg aEA+

h = dual Coxeter number, t, = ¢-th symmetrizer of /
e Ansatz for solution to Hsv(q) = Ev(Qq)

W(q) = w(z,r) = 2 2p(r)
= solution for k = 1/2,/1 + 4g.

[ h h
on(r) = chexp ( ;“2] 2) L2 ( 21‘ewr2> .
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Generalization of Calogero’s solution, undeformed case

Application to Calogero models

e eigenenergies

ht,

1
En=7 [<2+h+h\/1 +4g> /+8n] S
e anyonic exchange factors

@Z}(Q1a---767i7q/'a---C7n):emsﬂ)(ch»---aq/'aQia---Qn), for 1 gi?jgna

with

1 1
= +-/1+4
s=5+5V1+4g

" ris symmetric and z antisymmetric



Application to Calogero models
[e]e] J

Generalization of Calogero’s solution, undeformed case

Application to Calogero models

The construction is based on the identities:

a-f B a?
aﬁgw(a-q)(ﬁ-q) - L aar

aeAt
(- Q) hht

(Oéﬁ) = 7&7
e

Y (@ B)(a-q)B-q = ht > (a-q)
a,BEAT acAt
Z Oéz = éhtg.
aeAt

Strong evidence on a case-by-case level, but no rigorous proof.
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Application to Calogero models

e antilinearly deformed Calogero Hamiltionian

Haac(p, q) = f+fZ a-qPf+ )y agq

acA+ acAt
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Antilinearly deformed Calogero Hamiltionian

Application to Calogero models

e antilinearly deformed Calogero Hamiltionian

Hadac(P.q) = 5 + % (@ 92+ >
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Antilinearly deformed Calogero Hamiltionian

Application to Calogero models

e antilinearly deformed Calogero Hamiltionian

HadC(p’ 7—’_7 Z - q Z (Oég'&q)z

acA+ acAt

e define the variables

aeA+
e Ansatz for solution to Hc1(q) = Ev(q)
V(q) = P(2,F) = 25¢(F)
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Antilinearly deformed Calogero Hamiltionian

Application to Calogero models

e antilinearly deformed Calogero Hamiltionian

Haac(p: Q) f+f do@E-gf+ > ((fi,)z

GeA+ aeAt

e define the variables

aeA+
e Ansatz for solution to Hcv(q) =
Y(q) = (2, F) = Z5¢(F)

when identies still hold =
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Application to Calogero models

Deformed Bs;-models

e potential >~ A+ (5‘?—3)2 from deformed Coxeter group factors
oy = {1’_170}! Qo = {071)_1}5 a3 = {07071}

Q0 0 00 0 Q0 Q0

a1 — (1 —2ko) g2 — 2iNo Q3

(1 —2r0) (G2 — g3) +2iAo (G2 + G3)
(1 —2k0) g3 — 2iAoQ2

g1 — (1 —2k0) g3 + 2iAo Q2

(1 —2x0) (g2 + @3) +2iXo (g3 — Qo)
(1 —2r0) G2 +2iX 03

g1 + (1 — 2k0) G2 + 2iA\o Q3

g1+ (1 —2K0) g3 — 2iX0 Q2

as
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Deformed Bs;-models

e potential >~ A+ (5‘?—3)2 from deformed Coxeter group factors
oy = {1’_170}! Qo = {071)_1}5 a3 = {07071}

Q0 0 00 0 Q0 Q0

a1 — (1 —2ko) g2 — 2iNo Q3

(1 —2r0) (G2 — g3) +2iAo (G2 + G3)
(1 —2k0) g3 — 2iAoQ2

g1 — (1 —2k0) g3 + 2iAo Q2

(1 —2x0) (g2 + @3) +2iXo (g3 — Qo)
(1 —2r0) G2 +2iX 03

g1 + (1 — 2k0) G2 + 2iA\o Q3

g1+ (1 —2K0) g3 — 2iX0 Q2

as
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Antilinearly deformed Calogero Hamiltionian

Application to Calogero models

e PT-symmetry for &

ot 541 *)5[1,542*)5[5,5[3—)*543, 544*)5[8, 545*)542,
Qg — Gg, 07 — a7, &g — Qg, Gg — Qg
Ui : 5[1 —)5[4, 5(2—>—5é2,5é3—>5é6, d4—)&1,&5—>d5,

&6 — 5[3, 547 — 5[8, dg — 5[7, 649 — dg,
e PT-symmetry in dual space

of 1 Q1= G, — G2, @3 = —Q3, 1 — —1,
oS Q1 — 41,92 — 03, Q3 = Q2, © — —1.
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Conclusions

Some general conclusions

@ We have formed a systematic construction of an antilinear
deformation employed as analogue to P7 deformation.

@ We have found new models based on this deformation.
@ Look at the other algebras.

@ Find excited states of the wavefunction v (x)
@ Investigate integrability of the new deformed models.
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Conclusions

Thank you for your attention
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