REALITY OF THE QUANTUM NORMAL FORM GENERATED BY PT-SYMMETRIC PERTURBATIONS

EMANUELA CALICETI

ABSTRACT. Consider the classical Hamiltonian $\mathcal{H}_{\varepsilon}(\xi, x) = \omega_1 \xi_1 + \ldots + \omega_l \xi_l + \varepsilon \mathcal{V}(\xi, x), \varepsilon \in \mathbb{R}$, defined on the phase space $\mathbb{R}^l \times \mathbb{T}^l$, where \mathcal{V} is a periodic potential with real Fourier coefficients \mathcal{V}_k satisfying the condition: $\mathcal{V}_{2k} = \mathcal{V}_{-2k}$ and $\mathcal{V}_{2k+1} = -\mathcal{V}_{-2k-1}$, for all $k \in \mathbb{Z}$. Its (Weyl) quantization yields the non self-adjoint *PT*-symmetric operator $H_{\varepsilon} = -i\hbar[\omega_1 \frac{\partial}{\partial x_1} + \ldots + \omega_l \frac{\partial}{\partial x_l}] + \varepsilon V$ acting on $L^2(\mathbb{T}^l)$. We consider a class of perturbations \mathcal{V} for which the quantum normal form is uniformly convergent with respect to \hbar , and prove that the *PT*-symmetry implies the reality of

 εV acting on $L^2(\mathbb{T}^l)$. We consider a class of perturbations \mathcal{V} for which the quantum normal form is uniformly convergent with respect to \hbar , and prove that the *PT*-symmetry implies the reality of its symbol. This entails the explicit contruction of a similarity transformation mapping H_{ε} into a self-adjoint operator, as well as of an exact quantization formula for its real spectrum. For $\hbar = 0$ the construction reduces to a classical complex canonical transformation mapping the complex Hamiltonian $\mathcal{H}_{\varepsilon}(\xi, x)$ into a real one.