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purpose

compact presentation of ’ quantum theory‘ of closed “P7” systems

defined (H,©) [or triple (H,A,©O) etc]

v e.g., via Hamiltonian H # HT, charge A # Af, etc

as unitary |a la Scholtz et al| (1992)
v ie., in ad hoc “standard” Hilbert space H )

and causal via ’short—range smearing‘ of coordinates:

v' MZ, Scattering theory ..., Phys. Rev. D. 80 (2009) 045009




two fundamental concepts

1. ’fundamental length‘ 0 (= a smearing of O)

e method: lattices, dim H®) = N < oo
v MZ, ...PT-symmetric chain-models ..., J. Phys. A 40 (2007) 4863
= illustrative example : exactly solvable discrete well

2. 0D (= parameter-domain boundaries)

e physics: quantum catastrophes

= benchmark example | II |: | Big-Bang|in cosmology
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1 the first example (mathematics)



inspiration: Hermaitian discrete square well
Schrodinger equation
HU U = BV 0 - =0,1,...,N -1

N by N Hamiltonian

(001 0 ... 0]
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H =19 1 - . ol =[#"
0 1
(0 ... 0 1 0]




in terms of Chebyshev polynomials of the second kind

U(0,x,)
= | Ve
UN—1,z,)
energies BV = 2z, = real
+ )7
B — 9 gos NEDT ~0,1,....,N—1
n COS N+ 1 ) Y Y )



today: non-Hermaitian discrete square well

Schrodinger equation

HI Iy = BTy - p=0,1,...,N -1

for | square-well model of the first kind | with

T(0,z,)
T(,z, 1/2
|71y = ( ) ELT]:QCOSW, n=0,1,...,N—-1
T(N —1,z,)
and - -
0 2 0O ... 0
1 0 1
- | o | # [HT]".
0 1
0 0 1 0




manifest non-Hermiticity

1. spectrum of H(\) real for A € D)
2. = the Schrodinger equation

o [Vm) = Fp [Um)) s ie, (| H = Fp (U]
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solutions

1. ’ ket-components ‘

{20v") =T(1,2) =,

By =12,2) =222 -1, ... {Np =T(N-1,2)

2. ‘ ket-ket-components ‘

{alo") =T(n,2), a=23,... N,

3. |different| -

{1') =T(0,2) =1, {1p!") =T(0,2)/2=1/2.
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the model is cryptohermitian

choose H¥) = CN

and replace the usual inner product

this defines H %) ‘
the THEORY using operator doubles

(H(}), ©(x))
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metric

1. bicompleteness and biorthogonality,

=2

-1

I=)  [¢n)

n

1
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I
=)

2. [formula|;

0 =3 [u) nf? (vl

n=0

3. math: © > 0 for 7 € A®
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fundamental-length: band-matrix metrics

solve Dieudonné equation

He=0H, (N'0=6A, ..)

1. ’diagonal metric ‘ = zero-parametric
O = 5, 5(1 — 801 /2) O™, a,8=1,2,...,N.
2. = one-parametric
/2 A 0 0 0
A1 X 0
0o XX 1 .0
0=KM)\) =
0 O A0
A1 A
0 0O 0 X 1
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the nontriviality of horizons 9D®)

the difficult part is to prove the positivity.

Figure 1: The A—dependence of the sextuplet of the eigenvalues of matrix

KO(N).
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(1) matrix K(©()\) defines the (positive definite) metric ©(® ()
if and only if
1A < 0.5176380902 = 2A) where A'®) = 0.2588190451 is the smallest
positive zero of T'(6, \);
(2) matrix K©)()\) specifies the parity-resembling pseudometric P® () (with the three
positive and three negative eigenvalues)
if and only if
IA| > 1.931851653 = 2\, where AlSh, = 0.9659258265 is the largest
zero of T'(6, \);
(3) matrix K(®(\) possesses strictly one negative eigenvalue
if and only if
270

of T'(6, ).

<Al < A9 where A9 = 0.7071067812 is the third positive zero

med med
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’in the limit A — 0 ‘:
Fi(A) ~ 172, k() = 1+ Ay(A)

—2 X3 — 5 X091 1 3/2 X% + 6 M6y 4+ 1/29°X° + 406 — X6 =0,

Yo — 0, yo1 — 1, yao — £V/3

’in the limit A\ — oo‘

star-shaped

pup at N =2p

N =6: y =~ £1.246979604, +0.4450418679 and £1.801937736
= roots of U(6,y)
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horizons 9D'®) of KV)()\) at N = 2p:

Figure 2: The A—dependence of eigenvalues of K® ().

boundary = the smallest roots of U(2p, \),

1
Ae DO = (cos (p+ )W,cos (p) , N =2p.
2p+1 2p+1
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pentadiagonal ©

’ two-parametric ‘

(12 A | u 0

A I4+p| Ao

14 A 1 A

O=LNNu=1] o wo | A1
0 0 I

0 0 |... 0

degeneracy of vanishing eigenvalues at A = 0

p=1/14+/1/2=0.5411961001, 1.306562965.
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Figure 3: The u—dependence of the A\ = 0 eigenvalues of matrix L® (X, u).
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Figure 4: The domain  of positivity of matrix L® (X, u).

secular polynomial seems completely factorizable over reals.
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the final square-well message

the dynamics is well controlled by the variations of the set x of the optional
parameters in the metric operator © = O(k)

in particular, this may change the EP horizons via A

in our example: schematic model
made compatible with the standard postulates of quantum theory

each multiindex £ € D® numbers the respective Hilbert spaces
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the summary of introduction

’cryptohermitian discrete square Well‘

v’ elementary
cryptohermiticity (= hidden Hermiticity)
fundamental length (short-ranged ©s)
no EPs (0D = @)
v simplest H # HT
non-unitary Dyson hermitizer  : H¥) — HE) ~ H)
energies = real, explicit
v non-numerical at any N:
short-range, band-matrix ©

EP horizons via additional As (cf. the second example)
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2 the second example (physics):
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a toy-model quantum Universe
in the vicinity of Big Bang

arXiv:1105.1282
710th Workshop on Quantization, Dualities and Integrable Systems”
(April 22 - 24, 2011), invited talk
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the model (H, A, O)

1. purely kinetic generator of time evolution (“Hamiltonian™)

2. N spatial grid points g;(¢) treated as eigenvalues of “space geometry”

A

A=G=GM(t)=

Y11
Y21

N1
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nothing before Big Bang and after Big Crunch
1. N conditions of reality of the spectrum

Im gj(t):(), J=L2,....N,  tliitia <t < lfinal-
2. the partial or complete absence of measurability of the space,

Im g](t) 7£07 j:1727"-7NBB07 t¢ [tinitialatfinal]u NBBCSN‘

3. ’BBC phenomenon‘ simulated by N — 1 conditions

lim g;(t) = gn(tc) =9, Jj=1,2,...,N—1

t—tc

of a complete confluence of the N—plet of eigenvalues.

4. N = 4 illustration: p.t.o.
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space

initial time final

Figure 5: Quantized geography-history of the four-grid-point Universe.
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space

time

Figure 6: The open-universe alternative
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mathematics

1. the necessary non-Hermiticity in H(@firf t),

G(t) # G(1)
2. the sufficient (crypto)hermiticity in Hg;c;nd)’
H=H''=0"'H'0 = 6'HO,
G(t)=GHt)=0"'G(t)e.
3. the ansatz
Ot) =a(t) I +b(t)H +c(t) H* + ...+ z(t) HN !

4. the reduced Dieudonné equation (using [A4, B]; := AB — BYA),

a(t) [I, G)]; +b(t) [H,Gt)]; +c(t) [HL G@t)]i +. ..+ 2(t) [HN L, G(#)]; = 0.
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the alternative to Penrose’s scenario

teaching by example: N =2

1. take three real parameters with positive r(¢) > 0 and two eigenvalues,

é,(g)(t) _ _T(t) _U(t)
u(t)  r(t)

2. essentially one-parametric via a re-parametrization,

g2 (t) = £/r2(t) — ult)o(t)

1 1
u(t) = Loy, oft) = oty
3. conclude: p(t) = “proper time” and the system is
unobservable at o(t) < —2r(t),
observable at —2r(t) < o(t) < 2r(t)

unobservable again at o(t) > 2r(t).
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metric OW)

1. two-free-parameters anzatz,

@(2)(t)(a(t)+2b(t) —b(t) ) H<2>< 2 1
b)) a(t) + 26(0) 12

2. the positivity of eigenvalues 0 (t) = a(t) + 2b(t) £ b(t)
= the single constraint a(t) > max[—b(t), —3b(t)]

3. Dieudonné conditions = another single constraint,
2b(t)r(t) + u(t)a(t) + 2b(t)u(t) + v(t)a(t) + 2b(t)v(t) = 0.

4. metric, finally,
0 (1) — 2r(t) u(t) +o(t) |
u(t) +v(t) 2r(t)
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discussion

Figure 7: Physical domain (marked by @) in (p, )—plane.
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3

outlook
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the “three-Hilbert-space quantum theory”:

0. textbook level quantum theory :
prohibitively complicated Hamiltonian §
generating unitary time evolution

physics = trivial

calculations = practically impossible

simplification /

1. the same state 1) represented
in the false Hilbert space
calculations = feasible

physical meaning = lost

hermitization
—

35

\’\ unitary equivalence

2. amended inner product
standardized representation

picture = synthesis
physics = reinstalled




the sense of PHHQP /THSQT

v' one of the most remarkable features of quantum mechanics may be
seen in the robust nature of its “first principles” (here, not violated)
v’ probabilistic interpretation practically did not change during the last
cca eighty years (here, not violated)
v’ in contrast, innovations do not seem to have ever slowed down:
here, non-unitary Fourier (a.k.a. Dyson) transformation (2
v the first new physics behind PHHQP /THSQT: see Scholtz et al (1992):

fermions = )X bosons

e summarizing the message: the dynamical content of phenomenological
quantum models may /should be encoded not only in the Hamiltonian (and

other observables) but also, equally efficiently, in metric operators ©
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