Models with fundamental $length^1$ and the finite-dimensional simulations of Big Bang

Miloslav Znojil

Nuclear Physics Institute ASCR, 250 68 Řež, Czech Republic

¹talk in Dresden (June 22, 2011, 10.50 - 11.35 a.m.)

purpose

compact presentation of quantum theory of closed " \mathcal{PT} " systems

<u>defined</u> via double (H, Θ) [or triple (H, Λ, Θ) etc]

 \checkmark e.g., via Hamiltonian $H\neq H^{\dagger},$ charge $\Lambda\neq\Lambda^{\dagger},$ etc

as unitary à la Scholtz et al (1992)

 \checkmark i.e., in $ad\ hoc$ "standard" Hilbert space $\mathcal{H}^{(S)}$

and <u>causal</u> via short-range smearing of coordinates: \checkmark MZ, Scattering theory ..., Phys. Rev. D. 80 (2009) 045009

two fundamental concepts

1. fundamental length θ (= a smearing of Θ)

• method: lattices, dim $\mathcal{H}^{(S)} = N < \infty$

✓ MZ, ... PT-symmetric chain-models ..., J. Phys. A 40 (2007) 4863
 ⇒ illustrative example I : exactly solvable discrete well

2. horizons $\partial \mathcal{D}$ (= parameter-domain boundaries)

• physics: quantum catastrophes

 \Rightarrow benchmark example II : Big-Bang in cosmology

REFERENCES

.

the first conceptual innovation: "horizons"

 \checkmark multiples $(H, \Lambda, \dots, \Theta)$: the "invisible" exceptional points of Λ, \dots

MZ, J. Phys. A: Math. Theor. 41 (2008) 244027

models with fundamental length: example I

✓ Chebyshev polynomials: (H, Θ) -formalism

MZ, Phys. Lett. A 375 (2011) 2503

✓ multiples $(H(t), \Lambda(t), \dots, \Theta(t))$

MZ, "Time-dependent version of cryptohermitian quantum theory", Phys. Rev. D 78 (2008) 085003, arXiv:0809.2874

adiabatic case: example II

 \checkmark "geometry operators" $\Lambda(t):$ quantized gravity

MZ, "Quantum Big Bang", arXiv:1105.1282

1 the first example (mathematics)

inspiration: *Hermitian* discrete square well

Schrödinger equation

$$H^{[U]} |\psi_n^{[U]}\rangle = E_n^{[U]} |\psi_n^{[U]}\rangle, \qquad n = 0, 1, \dots, N-1$$

 ${\cal N}$ by ${\cal N}$ Hamiltonian

$$H^{[U]} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \dots & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} H^{[U]} \end{bmatrix}^{\dagger}$$

solvable in terms of Chebyshev polynomials of the second kind

$$|\psi_n^{[U]}\rangle = \begin{bmatrix} U(0, x_n) \\ U(1, x_n) \\ \vdots \\ U(N - 1, x_n) \end{bmatrix};$$

energies $E_n^{[U]} = 2x_n = \text{real}$

$$E_n^{[U]} = 2 \cos \frac{(n+1)\pi}{N+1}, \qquad n = 0, 1, \dots, N-1.$$

today: non-Hermitian discrete square well

Schrödinger equation

$$H^{[T]} |\psi_n^{[T]}\rangle = E_n^{[T]} |\psi_n^{[T]}\rangle, \quad n = 0, 1, \dots, N-1$$

for square-well model of the first kind with

$$|\psi_n^{[T]}\rangle = \begin{bmatrix} T(0, x_n) \\ T(1, x_n) \\ \vdots \\ T(N-1, x_n) \end{bmatrix}, \quad E_n^{[T]} = 2 \cos \frac{(n+1/2)\pi}{N}, \quad n = 0, 1, \dots, N-1$$

and

$$H^{[T]} = \begin{bmatrix} 0 & 2 & 0 & \dots & 0 \\ 1 & 0 & 1 & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & 0 & 1 \\ 0 & \dots & 0 & 1 & 0 \end{bmatrix} \neq \begin{bmatrix} H^{[T]} \end{bmatrix}^{\dagger}.$$

manifest non-Hermiticity

•

1. spectrum of $H(\lambda)$ real for $\lambda \in \mathcal{D}^{(H)}$

$$H\left|\psi_{n}\right\rangle = E_{n}\left|\psi_{n}\right\rangle$$

2. \implies the second Schrödinger equation

 $H^{\dagger} |\psi_m\rangle\rangle = F_m^* |\psi_m\rangle\rangle$, i.e., $\langle\!\langle\psi_m| H = F_m \langle\!\langle\psi_m|$

solutions

•

1. ket-components

$$\{2|\psi^{[T]}\rangle = T(1,x) = x,$$

$$\{3|\psi^{[T]}\rangle = T(2,x) = 2x^2 - 1, \quad , \dots, \{N|\psi^{[T]}\rangle = T(N-1,x)$$

2. ket-ket-components

$$\{\alpha | \psi^{[T]} \rangle = T(n, x), \quad \alpha = 2, 3, \dots, N,$$

3. different :

$$\{1|\psi^{[T]}
angle=T(0,x)=1\,,\quad \{1|\psi^{[T]}
angle
angle=T(0,x)/2=1/2\,.$$

the model is cryptohermitian

choose $\mathcal{H}^{(F)} \equiv \mathbb{C}^N$

and replace the usual inner product

$$(\vec{a}, \vec{b}) = \sum_{\alpha=1}^{N} a_{\alpha}^* b_{\alpha}$$

by

.

$$(\vec{a}, \vec{b})^{(S)} = \sum_{\alpha=1}^{N} \sum_{\beta=1}^{N} a_{\alpha}^* \Theta_{\alpha, \beta} b_{\beta}$$

this defines $\mathcal{H}^{(S)}$

the THEORY using operator doubles

$$(H(\lambda),\Theta(\kappa))$$

1	റ
Т	Δ

metric

•

1. bicompleteness and biorthogonality,

$$I = \sum_{n=0}^{N-1} |\psi_n\rangle \frac{1}{\langle\!\langle \psi_n | \psi_n \rangle\!\rangle} \langle\!\langle \psi_n |, \langle \psi_n | \psi_n \rangle = \delta_{m,n} \langle\!\langle \psi_n | \psi_n \rangle$$

2. formula:

$$\Theta = \sum_{n=0}^{N-1} |\psi_n\rangle \rangle |\nu_n|^2 \langle \langle \psi_n |$$

3. math: $\Theta > 0$ for $\vec{\nu} \in \triangle^{(\Theta)}$

fundamental-length: band-matrix metrics

solve Dieudonné equation

$$H^{\dagger}\Theta = \Theta H$$
, $(\Lambda^{\dagger}\Theta = \Theta \Lambda$, ...)

1. diagonal metric = zero-parametric

$$\Theta_{\alpha,\beta}^{(diagonal)} = \delta_{\alpha,\beta} (1 - \delta_{\alpha,1}/2) \,\Theta_{N,N}^{(diagonal)} \,, \qquad \alpha,\beta = 1, 2, \dots, N \,.$$

2. $\boxed{\text{tridiagonal}} = \text{one-parametric}$

$$\Theta = K^{(N)}(\lambda) = \begin{bmatrix} 1/2 & \lambda & 0 & 0 & \dots & 0 \\ \lambda & 1 & \lambda & 0 & \ddots & \vdots \\ 0 & \lambda & 1 & \ddots & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \lambda & 0 \\ \vdots & \ddots & \ddots & \lambda & 1 & \lambda \\ 0 & \dots & 0 & 0 & \lambda & 1 \end{bmatrix}.$$

the nontriviality of horizons $\partial \mathcal{D}^{(\Theta)}$

the difficult part is to prove the positivity.

Figure 1: The λ -dependence of the sextuplet of the eigenvalues of matrix $K^{(6)}(\lambda)$.

(1) matrix $K^{(6)}(\lambda)$ defines the (positive definite) metric $\Theta^{(6)}(\lambda)$

if and only if $|\lambda| < 0.5176380902 = 2\lambda_{min}^{(6)}$ where $\lambda_{min}^{(6)} = 0.2588190451$ is the smallest positive zero of $T(6, \lambda)$;

(2) matrix $K^{(6)}(\lambda)$ specifies the parity-resembling pseudometric $\mathcal{P}^{(6)}(\lambda)$ (with the three positive and three negative eigenvalues)

if and only if

 $|\lambda| > 1.931851653 = 2\lambda_{max}^{(6)}$ where $\lambda_{max}^{(6)} = 0.9659258265$ is the largest zero of $T(6, \lambda)$;

(3) matrix $K^{(6)}(\lambda)$ possesses strictly one negative eigenvalue

if and only if

 $2\lambda_{min}^{(6)} < |\lambda| < \lambda_{med}^{(6)}$ where $\lambda_{med}^{(6)} = 0.7071067812$ is the third positive zero of $T(6, \lambda)$.

$$\begin{split} & \overline{\text{in the limit } \lambda \to 0} :\\ & k_1(\lambda) \sim 1/2, \quad k_j(\lambda) = 1 + \lambda \, y(\lambda) \\ & -2 \, \lambda^5 y^3 - 5 \, \lambda^6 y^4 + 3/2 \, \lambda^5 y + 6 \, \lambda^6 y^2 + 1/2 \, y^5 \lambda^5 + y^6 \lambda^6 - \lambda^6 = 0 \,, \\ & y_0 \to 0, \, y_{\pm 1} \to \pm 1, \, y_{\pm 2} \to \pm \sqrt{3} \end{split}$$

in the limit $\lambda \to \infty$

star-shaped

p up at N=2p $N=6:\ y\approx \pm 1.246979604,\pm 0.4450418679 \text{ and }\pm 1.801937736$ = roots of U(6,y)

horizons $\partial \mathcal{D}^{(\Theta)}$ of $K^{(N)}(\lambda)$ at any N = 2p:

Figure 2: The λ -dependence of eigenvalues of $K^{(8)}(\lambda)$.

boundary = the smallest roots of $U(2p, \lambda)$,

$$\lambda \in \mathcal{D}^{(\Theta)} = \left(\cos\frac{(p+1)\pi}{2p+1}, \cos\frac{(p)\pi}{2p+1}\right), \qquad N = 2p.$$

pentadiagonal Θ

two-parametric

$$\Theta = L^{(N)}(\lambda, \mu) = \begin{bmatrix} 1/2 & \lambda & \mu & 0 & \dots & 0 & 0 \\ \lambda & 1+\mu & \lambda & \mu & 0 & \dots & 0 \\ \hline \mu & \lambda & 1 & \lambda & \mu & \ddots & \vdots \\ 0 & \mu & \lambda & 1 & \ddots & \ddots & 0 \\ 0 & 0 & \mu & \ddots & \ddots & \lambda & \mu \\ \vdots & \vdots & \ddots & \ddots & \lambda & 1 & \lambda \\ \hline 0 & 0 & \dots & 0 & \mu & \lambda & 1-\mu \end{bmatrix}$$

degeneracy of vanishing eigenvalues at $\lambda = 0$ $\mu = \sqrt{1 \pm \sqrt{1/2}} = 0.5411961001, 1.306562965.$

Figure 3: The μ -dependence of the $\lambda = 0$ eigenvalues of matrix $L^{(8)}(\lambda, \mu)$.

•

Figure 4: The domain Ω of positivity of matrix $L^{(8)}(\lambda,\mu).$

secular polynomial seems completely factorizable over reals.

the final square-well message

the dynamics is well controlled by the variations of the set κ of the optional parameters in the metric operator $\Theta = \Theta(\kappa)$

in particular, this may change the EP horizons via Λ

in our example: schematic model

made compatible with the standard postulates of quantum theory each multiindex $\vec{\kappa} \in \mathcal{D}^{\Theta}$ numbers the respective Hilbert spaces

the summary of introduction

cryptohermitian discrete square well	
\checkmark elementary	
cryptohermiticity (= hidden Hermiticity)	
fundamental length (short-ranged Θ s)	
no EPs $(\partial \mathcal{D} = \emptyset)$	
$\checkmark \text{ simplest } H \neq H^{\dagger}$	
non-unitary Dyson hermitizer $\Omega : \mathcal{H}^{(F)} \to \mathcal{H}^{(P)} \sim \mathcal{H}^{(S)}$	
energies = real, explicit	
\checkmark non-numerical at any N:	
short-range, band-matrix Θ	
EP horizons via additional Λ s (cf. the second example)	

2 the second example (physics):

a toy-model quantum Universe in the vicinity of Big Bang

arXiv:1105.1282

"10th Workshop on Quantization, Dualities and Integrable Systems" (April 22 - 24, 2011), invited talk

the model (H, Λ, Θ)

1. purely kinetic generator of time evolution ("Hamiltonian")

$$H = H^{(N)} = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \ddots & \vdots & \vdots \\ 0 & -1 & 2 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & -1 & 0 \\ \vdots & \vdots & \ddots & -1 & 2 & -1 \\ 0 & 0 & \dots & 0 & -1 & 2 \end{bmatrix}$$

2. N spatial grid points $g_j(t)$ treated as eigenvalues of "space geometry"

$$\Lambda = \hat{G} = \hat{G}^{(N)}(t) = \begin{bmatrix} \gamma_{11} & \gamma_{12} & \dots & \gamma_{1N} \\ \gamma_{21} & \gamma_{22} & \dots & \gamma_{2N} \\ \dots & \dots & \dots & \dots \\ \gamma_{N1} & \gamma_{N2} & \dots & \gamma_{NN} \end{bmatrix}$$

nothing before Big Bang and after Big Crunch

1. N conditions of reality of the spectrum

Im $g_j(t) = 0$, $j = 1, 2, \dots, N$, $t_{initial} \le t \le t_{final}$.

2. the partial or complete absence of measurability of the space,

Im $g_j(t) \neq 0$, $j = 1, 2, \dots, N_{BBC}$, $t \notin [t_{initial}, t_{final}]$, $N_{BBC} \leq N$.

3. BBC phenomenon simulated by N-1 conditions

$$\lim_{t \to t_c} g_j(t) = g_N(t_c) := g_c , \quad j = 1, 2, \dots, N-1$$

of a complete confluence of the N-plet of eigenvalues.

4. N = 4 illustration: p.t.o.

Figure 5: Quantized geography-history of the four-grid-point Universe.

•

Figure 6: The open-universe alternative

.

mathematics

1. the necessary non-Hermiticity in $\mathcal{H}_{\Theta=I}^{(first)}$,

 $\hat{G}(t) \neq \hat{G}^{\dagger}(t)$

2. the sufficient (crypto)hermiticity in $\mathcal{H}_{\Theta \neq I}^{(second)}$,

$$\begin{split} H &= H^{\ddagger} := \Theta^{-1} H^{\dagger} \Theta \; \equiv \; \Theta^{-1} H \Theta \,, \\ \hat{G}(t) &= \hat{G}^{\ddagger}(t) := \Theta^{-1} \hat{G}^{\dagger}(t) \Theta \,. \end{split}$$

3. the ansatz

$$\Theta(t) = a(t) I + b(t) H + c(t) H^2 + \ldots + z(t) H^{N-1}$$

4. the reduced Dieudonné equation (using $[A, B]_{\dagger} := AB - B^{\dagger}A$),

$$a(t) [I, \hat{G}(t)]_{\dagger} + b(t) [H, \hat{G}(t)]_{\dagger} + c(t) [H^2, \hat{G}(t)]_{\dagger} + \ldots + z(t) [H^{N-1}, \hat{G}(t)]_{\dagger} = 0.$$

the alternative to Penrose's scenario

teaching by example: N = 2

1. take three real parameters with positive r(t) > 0 and two eigenvalues,

$$\hat{G}^{(2)}(t) = \begin{pmatrix} -r(t) & -v(t) \\ u(t) & r(t) \end{pmatrix}, \quad g^{(2)}_{\pm}(t) = \pm \sqrt{r^2(t) - u(t)v(t)}$$

2. essentially one-parametric via a re-parametrization,

$$u(t) = \frac{1}{2}\varrho(t) e^{\mu(t)}, \qquad v(t) = \frac{1}{2}\varrho(t) e^{-\mu(t)}$$

3. conclude: $\varrho(t) =$ "proper time" and the system is unobservable at $\varrho(t) < -2r(t)$, observable at $-2r(t) \leq \varrho(t) \leq 2r(t)$ unobservable again at $\varrho(t) > 2r(t)$.

metric $\Theta^{(N)}$

1. two-free-parameters anzatz,

$$\Theta^{(2)}(t) = \begin{pmatrix} a(t) + 2b(t) & -b(t) \\ -b(t) & a(t) + 2b(t) \end{pmatrix}, \qquad H^{(2)} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

2. the positivity of eigenvalues $\theta_{\pm}(t) = a(t) + 2b(t) \pm b(t)$ = the single constraint $a(t) > \max[-b(t), -3b(t)]$

3. Dieudonné conditions = another single constraint,

$$2b(t)r(t) + u(t)a(t) + 2b(t)u(t) + v(t)a(t) + 2b(t)v(t) = 0.$$

4. metric, finally,

$$\Theta^{(2)}(t) = \left(\begin{array}{cc} 2r(t) & u(t) + v(t) \\ u(t) + v(t) & 2r(t) \end{array}\right) \,.$$

9	n
Э	4

discussion

Figure 7: Physical domain (marked by Φ) in (ρ, μ) -plane.

3 outlook

the "three-Hilbert-space quantum theory":

the sense of PHHQP/THSQT

.

 \checkmark one of the most remarkable features of quantum mechanics may be seen in the robust nature of its "first principles" (here, not violated)

 \checkmark probabilistic interpretation practically did not change during the last cca eighty years (here, not violated)

 ✓ in contrast, innovations do not seem to have ever slowed down: here, non-unitary Fourier (a.k.a. Dyson) transformation Ω
 ✓ the first new physics behind PHHQP/THSQT: see Scholtz et al (1992): fermions = Ω× bosons

• summarizing the message: the *dynamical* content of phenomenological quantum models may/should be encoded not only in the Hamiltonian (and other observables) but also, equally efficiently, in metric operators Θ