Self-avoiding walks on fractals:
scaling laws

Viktoria Blavatskaa
(with Y. Holovatchb and W. Jankea)

aInstitut für Theoretische Physik, Universität Leipzig, Germany
bNational Academy of Sciences of Ukraine, Lviv, Ukraine

The scaling behaviour of linear polymers in disordered media, modelled by self-avoiding random walks (SAWs) on the backbone of three- and four-dimensional percolation clusters is studied by Monte Carlo simulations. We apply the pruned-enrichment Rosenbluth chain-growth method (PERM). Our numerical results bring about the estimates of critical exponents, which characterize disorder averages of end-to-end distance and number of SAWs.