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I Motivation for QFT on NC spacetime

1)Snyder 1947, Yang 1947:
Hope to remove divergences by introducing a minimum length

2)Gedankenexperiment:
(Doplicher, Fredenhagen, Roberts: [DFR 1995])

Creation of micro–black holes in scattering events with high
energy transfer restricts possible resolution of spacetime events.
Below Planck scale, measurements become meaningless.
=⇒ spacetime uncertainty relations

3)String theory:
(Connes, Douglas, Schwarz; Schomerus ; Seiberg, Witten (1998/ 1999))

Low energy limit of open string attached to a
D–brane in a constant background magnetic
field can be desribed by QFT on NC space (, not NC spacetime).
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II Particular set–up of QFT on NC spacetime (1)

Popular idea to implement non–commutative structure :

• Use Weyl–Moyal correspondence & replace the product of
functions on commutative spacetime by Moyal–product
(∗–product):

(f1 ∗ f2)(x) :=
ˆ

exp( i
2
θµν∂x

µ∂y
ν)f1(x)f2(y)

˜

y=x

• [x̂µ, x̂ν ] =: iθµν1; x̂µ, x̂ν : coordinate operators;
θµν : real, antisymmetric, constant matrix (d = 1 + 3)

• trace property:
∫

d4xf ∗ g(x) =
∫

d4xf · g(x) for
f , g ǫ S(R3+1)

(• here: time/space non–commutativity (θ0i 6= 0, i = 1, 2, 3))
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II Particular set–up of QFT on NC spacetime (2)

Starting point for QFT on NC spacetime
• Ansatz for free (neutral massive scalar) theory:

SNC
kin = 1

2

∫
d4x : ( ∂

∂t
φ ∗ ∂

∂t
φ)(x) : +

: (∂iφ ∗ ∂ iφ)(x) : +m2 : (φ ∗φ)(x) : = Skin

due to trace property for star product

=⇒ free QFT in NC case equals free (ordinary) QFT

• Ansatz for interaction theory:

SNC
I ∝ 1

2

∫
d4xλ : (φ ∗ ... ∗ φ)(x) :∝

λ
∫

d4k1...
∫

d4kn : φ̌(k1)...φ̌(kn) : e

−i
2

P

i<j

k
µ
i

θµνkν
j

δ4(
∑

ki)

=⇒ Perturbation theory (generally): Vertices contain
trigonometric functions of momenta (twisting factor)
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IIIa Path Integral corresponding to T
⋆–Ordering (1)

• Näıve ansatz for path integral (θ0i 6= 0):

Choose nonlocal interaction: Lint(φ)∗ := φ ∗ φ ∗ φ(x),
e. g., and plug it in the formula for generating functional of
local case (∆c(z): causal propagator):

Z [J] = N00 exp[i
∫

d4zLint(
δ

iδJ(z))∗]×

× exp[−1
2

∫
d4a

∫
d4bJ(a)∆c(a − b)J(b)]

• Perturbative expansion leads to näıve Feynman rules: Graphs
with causal propagators as internel lines, only difference: every
vertex is multiplied by a factor (trigonometric function of
momenta)

• Example (fishgraph):
∫

d4q
(2π)4

i
q2−m2+iǫ

cos2(
pµθµνqν

2 ) i
(p−q)2−m2+iǫ
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IIIa Path Integral corresponding to T
⋆–Ordering (2)

Further remarks:

• These Feynman rules are also obtained by starting from
Gell–Mann - Low formula (canonical approach) and applying
T ⋆–operator (T ⋆–product: all time derivatives of star product
act after time ordering, see Heslop & Sibold [11/04])

• According to Gomis & Mehen [02,00]: Feynman rules violate
unitarity.

• Feynman rules violate causal time–ordering (C.D., in
preparation).

• No loss of (manifest) covariance (p. c. with Prof.
Fredenhagen.).

• See K. Fujikawa [06/04]: same p. i. from e. o. m.: same
Feynman rules as above
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IIIb Path Integral corresponding to T–Ordering (1)

• Question: In the case of θ0i 6= 0, can one modify the
generating functional (of the local theory) in such a way that
the Feynman rules preserve causal time ordering?

• Answer: Yes!

Z [J] = N00 exp[i
∫

d4z[Lint(
δ

iδJ(z))∗]
→

θ
]×

× exp[−1
2

∫
d4a

∫
d4bJ(a)T∆+(a − b)J(b)]

• T∆±(z) := ϑ(z0)∆+(z) + ϑ(−z0)∆+(−z) = ∆c(z)

• [( δ
δJ(x) )∗]

→

θ : For each time–ordered configuration take first

the time derivative (associated to θ0i ) of ∆+(x). Then, realize
the time ordering by multiplication with step function. (The
argument of the step function never contains θ0i ).
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IIIb Path Integral corresponding to T–Ordering (2)

Main result: Feynman rules are the same as those derived within the
canonical approach and leading to old–fashioned perturbation theory
(OTO) (equivalence between canonical approach and path integral)

• Old–fashioned perturbation theory (OTO) (Liao & Sibold
[05/02], [06/02]; see also Liao & Dehne [11/02] ): Start from
Gell–Mann - Low formula and apply T–ordering.

• T–product: all time derivatives of star product act before
time ordering is applied (See also Fujikawa [04/06], [04/10];
Heslop & Sibold [11/04].)

• These Feynman rules maintain unitarity and causal
time–ordering.

• Loss of (manifest) covariance.

• Derivation of Feynman rules from generating functional is
less tedious than in the canonical case!
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IIIb Path Integral corresponding to T–Ordering (3)

Excursion: Time–ordered perturbation theory
adapted to NC field theory (OTO), fishgraph example:

T ∝ λ2 P

σ1,2ǫ{−,+}

R

d3p1
ω~p1

R

d3p2
ω~p2

1
4
(1 + σ1

k0
1

ω~k1

)(1 + σ2
k0
2

ω~k2

)

· 2πδ(k0
1 − k0

2 )δ3(~p1 + ~p2 −
~k1)δ

3(~p1 + ~p2 −
~k2)

·

 

(
P

sym e
−i(−k1,σ1

,p1+,p2+)
e
−i(−k2,σ2

,p1+,p2+)
)

k0
1−ω~p1

−ω~p2
+iǫ

+
(
P

sym e
−i(−k1,σ1,p1−,p2−)

e
−i(−k2,σ2,p1−,p2−)

)

−k0
2−ω~p1

−ω~p2
+iǫ

!

• ω~p :=
p

m2 + ~p2, (a,b, c) := a ∧ b + a ∧ c + b ∧ c, a ∧ b :=
aµθµνbν

2
,

pσ := (σω~p,~p)τ

• Feynman graph decomposes into a part with retardation property and
advancement property

• Feynman rules corresponding to T–ordering (OTO): four–momenta in
the NC phase are on–shell (loss of covariance)

• Just compare to Feynman rules corresponding to T ⋆–ordering:
four–momenta are off–shell (covariance)
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IV Summary and outlook

Summary and outlook

• Main result: successful derivation of path integral formula
corresponding to the T–product in canonical case (Hamiltonian
approach)

• Feynman rules are identical to those of OTO and thus
preserve unitarity and causal time–ordering.

• time ordering (or rather quantization prescription) not rigidly
implemented in the path integral

• in progress: path integral based on T–operator
I) in u–coordinates, II) starting from field equation

• in progress: Wick rotation and Euclidean Feynman rules
(reflection positivity:θ0k → ±iθ0k (k = 1, 2, 3) , effect on
famous UV/IR–connection (!))

C.D. acknowledges advice from Prof. K. Sibold.
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