Optical systems, entanglement and quantum quenches

A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich

Part II: Quantum quench of Kondo correlations

Thanks to

- Christian Latta
- Florian Haupt
- Wolf Wüster, Parisa Fallahi

- Hakan Tureci (Princeton)
- Leonid Glazman (Yale)
- <u>Markus Hanl</u>, Andreas Weichselbaum, Jan von Delft (LMU Munich)

Confocal microscopy at low temperatures

detected signal includes interference effect:

$$S(\nu) \sim \begin{bmatrix} -i\chi(\nu)(1 + re^{i2\pi n(2L/\lambda)}] \\ \uparrow & \uparrow \end{bmatrix}$$

QD susceptibility: $\chi = \chi' + i\chi''$

orptive

scattered forward

scattered back & reflected

Photoluminescence as a function of gate voltage reveals different charging states

The influence on tunnel barrier width on QD photoluminescence

Signatures of strong tunnel coupling to fermionic reservoir (FR): Broad emission lines & spatially indirect transitions

• By adjusting the tunnel barrier we can suppress or enhance tunnel coupling to the reservoir.

Optical probe of spin physics

In some cases decoherence can be more interesting than coherent dynamics

Single electron charged QD+Fermionic reservoir

Quantum dot electron in local moment regime : $\langle \hat{\mathbf{n}}_e \rangle = 1$ Coupling is reduced to an effective spin-spin interaction

J > 0 (anti - ferromagnetic)

Can we learn something new about Kondo effect using optical absorption ?

- Competition between exchange coupling (leading to Kondo screening cloud) and Zeeman interaction should yield reduced magnetization: strong spinpolarization correlations allows us to measure magnetization from the area under the absorption curve.
- The quench of Kondo correlations upon optical excitation (trion formation) modify the lineshape, leading to power-law tails.

Absorption lineshapes of a single electron charged QD

 $\gamma_{korr} = \mathbf{kT}$

600

Strongly coupled QD

• The asymmetry in the lineshape is partly due to an optical interference effect

• Impossible to fit the strongly coupled QD with a perturbative lineshape

Absorption lineshapes of a single electron charged QD

• The asymmetry in the lineshape is partly due to an optical interference effect

• Impossible to fit the strongly coupled QD with a perturbative lineshape

The lineshape depends strongly on gate voltage & hence the Kondo temperature:

The influence on tunnel barrier width on a negatively charged QD absorption

Signatures of strong tunnel/exchange coupling:

- Asymmetric broadening at the edges
- Lamb-shift of the ground-state

The influence on tunnel barrier width on a negatively charged QD absorption

Trions states uncoupled from FR

Renormalization of the ground state energy

From fit (NRG): $U_{e-e} = 7.5 \text{meV}$ $\Gamma = 0.7 \text{meV}$ D = 3.5 meV Signatures of strong tunnel/exchange coupling:

- Asymmetric broadening at the edges
- Lamb-shift of the ground-state

Perturbative regime: $v > T_{K}$

Red detuning: exponential tails which allow us to determine the electron temperature

Kondo strong coupling regime: $\nu < T_K$

- Absorption process "turns off" the interactions $\hat{H}_i \neq \hat{H}_f$
- Fermionic reservoir (FR) strongly modiefied: part of the system
- Initial and final state FR are orthogonal

Anderson orthogonality catastrophe:

Consequence of quantum quench of Kondo correlations

$$A_{\sigma}(\nu) = 2\pi \sum_{mm'} \rho_{\rm m}^{\rm i}|_{\rm f} \langle {\rm m}'|e_{\bar{\sigma}}^{\dagger}|m\rangle_{\rm i}|^2 \delta(\omega_{\rm L} - E_{\rm m'}^{\rm f} + E_{\rm m}^{\rm i})$$

After absorption, system is not in an Eigenstate of \hat{H}_f

$$\begin{split} |\Psi(0)\rangle &= \hat{e}_{\sigma}^{\dagger} |\psi_{Kondo}\rangle \\ |\Psi(t)\rangle &= e^{i\hat{H}_{f}t} \hat{e}_{\sigma}^{\dagger} |\psi_{Kondo}\rangle \end{split}$$

Absorption spectrum can be rewritten as: $A(\nu) = -2 \text{Im} \mathcal{F}_{\nu} \{ \langle \Psi(0) \Psi(t) \rangle \}$

Kondo: power-law singularity

 $A(
u) \propto 1/
u^\eta~~{
m with}~~\eta=0.5$

 η related to the phase shifts in the Fermi sea and could be determined using the (generalized) Hopfield rule

Experimental signatures of Kondo correlations: remarkable agreement with the theory

• Power-law tails for $v < T_{\kappa}$ are smeared out by finite electron temperature!

How to determine the power law exponents?

- By adjusting the (circular) polarization of the laser, we could address transitions from spin up (blue) or down (red) initial states.
- The lineshapes are sensitive to the magnetic-field-tunable power-law exponents.

Suppression of magnetization

• The area under the absorption lineshapes reveal that the magnetization of the QD is suppressed.

Summary and Outlook

- Optical measurements allowed us to obtain signatures of quantum quench of Kondo correlations for the first time
- The Anderson orthogonality catastrophe induced power law exponents can be tuned by changing the magnetic field
- Use QD nuclear spin relaxation to monitor Kondo correlations
- Photon correlations can be used to monitor timeevolution following the quench.