

Kondo Problem to Heavy Fermions and Local Quantum Criticality

Qimiao Si

Rice University

Advanced School – Developments and Prospects in Quantum Impurity Physics, MPI-PKS, Dresden, May 30, 2011

- Introduction to quantum critical point
- Kondo problem to heavy Fermi liquid
- Heavy fermion quantum criticality
- Perspective and outlook

Q. Si, arXiv:1012.5440, a chapter in the book "Understanding Quantum Phase Transitions", ed. L. D. Carr (2010).

Pallab Goswami, Jed Pixley, Jianda Wu University)
Stefan Kirchner
CPfS)
Seiji Yamamoto
Jian-Xin Zhu, Lijun Zhu
Kevin Ingersent
Florida)

Jianhui Dai Dapiel Germann Ratiogelewart N. Oeschler T. Lühmann O. Tegus F. Steglich

- C. Krellner
- S. Paschen
- T. Westerkamp
- **T. Cichorek**
- O. Trovarelli
- P. Coleman

(Rice

(MPI-PKS,

(NHMFL, FSU) (Los Alamos) (Univ. of

(Zhejiang U.)

- Y. Toki (GEA-Saclay)
- S. WirthU. Cologne)
- R. Küchler
- K. Neumaier
- C. Geibel
- E. Abrahams

Phases and Phase Transitions

Disorder (T>T_{order})

Continuous Phase Transitions: Criticality

Criticality -- fluctuations of order parameter in d dimensions

• A: every spin (spontaneously) points up

Order parameter: $m = \lim_{h \to 0^+} \lim_{N_{site} \to \infty} M / N_{site} = 1$

• **B:** every microstate equally probable: **m=0**

• A: every spin (spontaneously) points up

Order parameter: $m = \lim \lim M / N_{sife} = 1$ $h \rightarrow 0^+ N_{site} \rightarrow \infty$

- **B:** every microstate equally probable: **m=0**
- **C:** every spin points along the transverse field: **m=0**

Quantum Phase Transition

• A: every spin (spontaneously) points up

Order parameter: $m = \lim_{h \to 0^+} \lim_{N_{site} \to \infty} M / N_{site} = 1$

- **B:** every microstate equally probable: **m=0**
- **C:** every spin points along the transverse field: **m=0**

Materials (possibly) showing Quantum Phase Transitions

- Heavy fermion metals
- Iron pnictides
- Cuprates
- Organic charge-transfer salts
- Weak magnets (eg Cr-V, MnSi, Ruthenates)
- Mott transition (eg V2O3)
- Insulating Ising magnet (eg LiHoF4)
- Field-driven BEC of magnons
- MIT/SIT/QH-QH in disordered electron systems
- Tunable systems (eg quantum dots, cold atoms)

Heavy fermion metals as prototype quantum critical points

VOLUME 14, NUMBER 3

Quantum critical phenomena*

John A. Hertz

The James Franck Institute and The Department of Physics, The University of Chicago, Chicago, Illinois 60637

VOLUME 14, NUMBER 3

Quantum critical phenomena*

John A. Hertz

The James Franck Institute and The Department of Physics, The University of Chicago, Chicago, Illinois 60637

Following Landau -- fluctuations of order parameter, $m(x, \tau)$, but in d+z dimensions

T=0 spin-density-wave transition

$$\mathcal{S} = \int d\mathbf{q} \frac{1}{\beta} \sum_{i\omega_n} (r + c\mathbf{q}^2 + |\omega_n|/\Gamma_\mathbf{q}) \,\phi^2 + \int u \,\phi^4 + \dots$$

$$d_{eff} = d + z > 4,$$

Gaussian

$$no \frac{\omega}{T}$$
 scaling

Beyond the Order-parameter Fluctuations

Inherent quantum modes may be important -- need to identify the additional critical modes before constructing the critical field theory.

Critical Kondo Destruction -- Local Quntum Critical Point

at the T=0 onset of antiferromagnetism

QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001); Phys. Rev. B68, 115103 (2003)

P. Coleman et al, JPCM 13, R723 (2001)

Introduction to quantum critical point

Kondo problem to heavy Fermi liquid

- Heavy fermion quantum criticality
- Perspective and outlook

Single-impurity Kondo Model:

$$H_{\text{Kondo}} = \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + J_{K} \mathbf{S} \cdot \mathbf{s}_{c,0}$$

Local
$$J_K > 0$$
 (fermion bath)

S: spin-1/2 moment at site 0

 $\mathbf{s}_{c,0} = (1/2)c_0^{\dagger}\vec{\sigma}c_0$

Single-impurity Kondo Model:

$$\frac{dJ_K}{dl} \equiv \beta(J_K) = J_K^2$$

- resistivity minimum (scattering increases as T is lowered!)
- asymptotic freedom
- Kondo screening (process of developing Kondo singlet correlations as T is lowered)

Single impurity Kondo model

• Kondo temperature: $T_K^0 \approx \rho_0^{-1} \exp(-1/\rho_0 J_K)$

Single impurity Kondo model

- Kondo temperature: $T_K^0 \approx \rho_0^{-1} \exp(-1/\rho_0 J_K)$
- Kondo entanglement: singlet ground state

$$\frac{1}{\sqrt{2}} \left(|\uparrow >_{f}| \downarrow >_{c} - |\downarrow >_{f}| \uparrow >_{c} \right)$$

Single impurity Kondo model

- Kondo temperature: $T_K^0 \approx \rho_0^{-1} \exp(-1/\rho_0 J_K)$
- Kondo entanglement: singlet ground state

$$\frac{1}{\sqrt{2}} \left(|\uparrow >_{f}| \downarrow >_{c} - |\downarrow >_{f}| \uparrow >_{c} \right)$$

- Kondo effect (emergence of Kondo resonance):
 - Kondo-singlet ground state yields an electronic resonance
 - local moment acquires electron quantum number due to Kondo entanglement

Kondo lattices:

$$\mathcal{H} = \sum_{ij,a} I^{a}_{ij} S^{a}_{i} S^{a}_{j}$$
$$+ \sum_{ij,\sigma} t_{ij} \mathbf{c}^{\dagger}_{i\sigma} \mathbf{c}_{j\sigma} + \sum_{i,a} J^{a}_{K} S^{a}_{i} s^{a}_{c,i}$$

Kondo lattices:

$$\mathcal{H} = \sum_{ij,a} I^{a}_{ij} S^{a}_{i} S^{a}_{j} + \sum_{ij,\sigma} t_{ij} \mathbf{c}^{\dagger}_{i\sigma} \mathbf{c}_{j\sigma} + \sum_{i,a} J^{a}_{K} S^{a}_{i} s^{a}_{c,i}$$

heavy Fermi liquid:

•Kondo singlet

Kondo resonance

• *xN_{site}* tightly bound local singlets

$$|s>_{i}=\frac{1}{\sqrt{2}}\left(|\uparrow>_{f}|\downarrow>_{c}-|\downarrow>_{f}|\uparrow>_{c}\right)_{i}$$

(cf. If x were =1, Kondo insulator)

• (1-x)N_{site} lone moments:

• xN_{site} tightly bound local singlets

$$s >_{i} = \frac{1}{\sqrt{2}} \left(|\uparrow >_{f}| \downarrow >_{c} - |\downarrow >_{f}| \uparrow >_{c} \right)_{i}$$

(cf. If x were =1, Kondo insulator)

• (1-x)N_{site} lone moments:

(C. Lacroix, Solid State Comm. '85)

- projection: |lone moment $>_{i,\sigma} = (-\sqrt{2}\sigma) c_{i,\bar{\sigma}} |s >_i$
- $(1-x)N_{site}$ holes with U= ∞

• *xN_{site}* tightly bound local singlets

$$|s>_{i}=\frac{1}{\sqrt{2}}\left(|\uparrow>_{f}|\downarrow>_{c}-|\downarrow>_{f}|\uparrow>_{c}\right)_{i}$$

(cf. If x were =1, Kondo insulator)

• (1-x)N_{site} lone moments:

(C. Lacroix, Solid State Comm. '85)

- projection: |lone moment $>_{i,\sigma} = (-\sqrt{2}\sigma) c_{i,\bar{\sigma}} |s >_i$
- (1-x)N_{site} holes with U=∞
- Luttinger's theorem:

(1-x) holes/site in the Fermi surface

(1+x) electrons/site

Heavy Fermi Liquid (Kondo Lattice)

- The large Fermi surface applies to the paramagnetic phase, when the ground state is a Kondo singlet.
- This can be seen through adiabatic continuity of a Fermi liquid.
- It can also be seen, microscopically, through eg slave-boson MFT (Auerbach & Levin, Millis & Lee, Coleman, Read & Newns)

Heavy Fermi Liquid (Kondo Lattice)

Heavy Fermi Liquid (Kondo Lattice)

Heavy Fermi Liquid

Cond. electron band $\mathcal{E}(k)$

Heavy electron bands

(,,,) (),) (),) (,,,)

 $E_{1,2}(k)$

(0,0)

(**π**,**π**)

 (π,π)

(0, 7)

resonance

Kondo

Heavy Fermi Liquid

Cond. electron band $\varepsilon(k)$

Heavy electron bands

 (π,π) $(0,\pi)$ (0,0)

 $E_{1,2}(k)$

Large Fermi surface

(**0**,**π**)

 (π,π)

(0,0)

 (π,π)

resonance

Kondo

Kondo lattices:

$$\mathcal{H} = \sum_{ij,a} I^{a}_{ij} S^{a}_{i} S^{a}_{j} + \sum_{ij,\sigma} t_{ij} \mathbf{c}^{\dagger}_{i\sigma} \mathbf{c}_{j\sigma} + \sum_{i,a} J^{a}_{K} S^{a}_{i} s^{a}_{c,i}$$

heavy Fermi liquid:

•Kondo singlet

Kondo resonance

No symmetry breaking, but macroscopic order

Critical Kondo Destruction -- Local Quantum Critical Point

at the T=0 onset of antiferromagnetism

Q. Si, arXiv:1012.5440, a chapter in the book "Understanding Quantum Phase Transitions", ed. L. D. Carr (2010).

- Introduction to quantum critical point
- Kondo problem to heavy Fermi liquid

Heavy fermion quantum criticality

• Perspective and outlook

Critical Kondo Destruction -- Local Quantum Critical Point

at the T=0 onset of antiferromagnetism

Q. Si, arXiv:1012.5440, a chapter in the book "Understanding Quantum Phase Transitions", ed. L. D. Carr (2010).

Kondo lattices:

$$S_{j}$$
:
 J_{k}
 C_{lv} :
 D_{k} :
 D_{k

$$\mathcal{H} = \sum_{ij,a} I^{a}_{ij} S^{a}_{i} S^{a}_{j}$$
$$+ \sum_{ij,\sigma} t_{ij} \mathbf{c}^{\dagger}_{i\sigma} \mathbf{c}_{j\sigma} + \sum_{i,a} J^{a}_{K} S^{a}_{i} s^{a}_{c,i}$$

 $\delta = T_{K}^{0}/I$

Kondo Effect at the AF QCP

- In the paramagnetic phase, E_{loc}^{*} is finite:
 - Ground state is a Kondo singlet
 - Fermi surface is large
 - Call this " P_L " phase
- Increasing RKKY interaction, I/T_{K}^{0} , leads to AF order, yielding AF QCP
- What happens to the E_{loc}^* scale as the AF QCP is approached from the P_L side?

T=0 spin-density-wave transition

$$S = \int d\mathbf{q} \frac{1}{\beta} \sum_{i\omega_n} (r + c\mathbf{q}^2 + |\omega_n|/\Gamma_{\mathbf{q}}) \phi^2 + \int u \phi^4 + \dots$$

Extended-DMFT* of Kondo Lattice (* Smith & QS; Chitra & Kotliar)

Mapping to a Bose-Fermi Kondo model:

$$\mathcal{H}_{\text{eff}} = J_K \, \mathbf{S} \cdot \mathbf{s}_c \, + \, \sum_{p,\sigma} E_p \, c_{p\sigma}^{\dagger} \, c_{p\sigma} \\ + g \, \mathbf{S} \cdot \sum_p \left(\vec{\phi}_p + \vec{\phi}_{-p}^{\dagger} \right) \, + \, \sum_p w_p \, \vec{\phi}_p^{\dagger} \cdot \vec{\phi}_p$$

+ self-consistency conditions

- Electron self-energy $\Sigma(\omega)$ \longleftrightarrow $G(k,\omega)=1/[\omega \varepsilon_k \Sigma(\omega)]$
- "spin self-energy" $M(\omega)$ (ω) $\chi(q,\omega)=1/[I_q + M(\omega)]$

Extended-DMFT of Kondo Lattice

ε-expansion of Bose-Fermi Kondo Model

QS, Rabello, Ingersent, Smith, Nature '01; PRB '03; L. Zhu & QS, PRB '02

ε-expansion of Bose-Fermi Kondo Model

Role of Berry phase

$$\mathcal{H}_{\text{eff}} = J_K \, \mathbf{S} \cdot \mathbf{s}_c \, + \, \sum_{p,\sigma} E_p \, c_{p\sigma}^{\dagger} \, c_{p\sigma} \\ + g \, \mathbf{S} \cdot \sum_p \left(\vec{\phi}_p + \vec{\phi}_{-p}^{\dagger} \right) \, + \, \sum_p w_p \, \vec{\phi}_p^{\dagger} \cdot \vec{\phi}_p$$

S. Kirchner & QS, arXiv:0808.2647

$$\mathcal{Z} = \int \mathcal{D}[ec{n}] e^{is oldsymbol{\omega}(ec{n}) - \int_0^eta H(sec{n})}$$

is a geometrical phase and equals the area on the unit sphere enclosed by $ec{n}(au)$

For ½<ε<1:

 $is\omega(\vec{n})$

- Retaining Berry phase yields ω/T scaling
- Dropping Berry phase violates ω/T scaling

Dynamical Scaling of Local Quantum Critical Point

arti i

$$\chi(\mathbf{q},\omega) = \frac{1}{(I_{\mathbf{q}} - I_{\mathbf{Q}}) + A (-i\omega)^{\alpha} \mathcal{M}(\omega/T)}$$

Continuous phase transition

Dynamical Scaling of Local Quantum Critical Point

$$\chi(\mathbf{q},\omega) = \frac{1}{(I_{\mathbf{q}} - I_{\mathbf{Q}}) + A (-i\omega)^{\alpha} \mathcal{M}(\omega/T)}$$

 $\alpha = 0.72$ J-X Zhu, D. Grempel and QS, PRL (2003)

 $\alpha = 0.83$

J-X Zhu, S. Kirchner, R. Bulla, and QS, PRL (2007)

-11

 $\alpha = 0.78$

M. Glossop & K. Ingersent, PRL (2007)

Local Quantum Critical Point

- ω/T scaling in $\chi(\omega,T)$ and $G(\omega,T)$
- •Collapse of a large Fermi surface
- •Multiple energy scales

- Introduction to quantum critical point
- Kondo problem to heavy Fermi liquid
- Heavy fermion quantum criticality

Experiments in CeCu_{6-x}Au_x

A. Schröder et al., Nature ('00); O. Stockert et al; M. Aronson et al.

Experiments in YbRh₂Si₂

S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel, F. Steglich, S. Paschen, S. Kirchner, and QS, PNAS 107, 14547 (2010)

S. Paschen et al, Nature (2004); P. Gegenwart et al, Science (2007)

Global Phase Diagram

Pure and doped YbRh2Si2

S. Friedemann et al, Nat. Phys. 5, 465 (2009)

also J. Custers et al, PRL 104, 186402 (2010)

Superconductivity near Kondo-destroying AF QCP in CeRhIn5

T. Park et al., Nature 440, 65 ('06); G. Knebel et al., PRB74, 020501 ('06)

H. Shishido, R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 ('05)

Pressure (GPa)

Quantum Criticality vs Superconductivity

T. Park et al., Nature 440, 65 ('06); G. Knebel et al., PRB74, 020501 ('06)

Dynamical Scaling of Local Quantum Critical Point

1

$$\chi(\mathbf{q},\omega) = \frac{1}{(I_{\mathbf{q}} - I_{\mathbf{Q}}) + A(-i\omega)^{\alpha} \mathcal{M}(\omega/T)}$$

AdS/CMT:

N. Iqbal, H. Liu, M. Mezei and QS, PRD 82, 045002 ('10)

T. Faulkner, G. T. Horowitz and M. M. Roberts, arXiv:1008.1581

SUMMARY

- Heavy fermions -- prototype quantum critical points
- Heavy Fermi liquid
 - Kondo entaglement in the ground state
 - quantum order without broken symmetry, supports
 Kondo resonances
- Local quantum critical point: Kondo destruction at antiferromagnetic QCP