Interplay of incipient magnetism and superconductivity in heavy-fermion metals

F. Steglich MPI for Chemical Physics of Solids, 01187 Dresden, Germany

experiments

J. Arndt, O. Stockert, M. Loewenhaupt (TUD)
S. Friedemann, S. Wirth
S. Lausberg, T. Westerkamp, M. Brando
H.S. Jeevan, C. Krellner, C. Geibel
S. Kirchner, Q. Si (Rice), P. Coleman (Rutgers), G. Zwicknagl (Braunschweig)

DFG FOR 960 "Quantum Phase Transitions"

Heavy-Fermion Superconductors						
	T _c (K)			T _c (K)		
CeCu ₂ Si ₂	0.6	('79 DA/K)	PrOs ₄ Sb ₁₂	1.85	('01 UCSD)	
[p = 2.9 GPa:	2.3	('84 GE/GR)]				
CeNi ₂ Ge ₂	0.2	('97 DA, '98 CA/GR)	β-YbAlB ₄	0.08	('08 TO/IR)	
CeColn-	0.4	(00 LANL)				
	0.4	('02 NA)	p > 0			
Ce ₂ PdIn ₈	0.7	('09 WŔ)	Eu metal	1.8-2.8	('09 SL, OS)	
CePt ₃ Si	0.7	('03 VI)				
p > 0			UBe ₁₃	0.9	('83 Z/LANL)	
CeCu ₂ Ge ₂	0.6	('92 GE)	UPI3 URU-Si-	0.5 1 4	(64 LANL) ('84 K/DA)	
CePd ₂ Si ₂	0.4	('94 CA)		1.4	('91 DA)	
CeRh ₂ Si ₂	0.4	('95 LANL)	UPd ₂ Al ₃	2.0	('91 DA)	
CeCu ₂	0.15	('97 GE/KA)	URhGe	0.3	('01 GR)	
Celn ₃	0.2	('98 CA)	UCoGe	3.0	('07 AM/KA)	
CeRhIn₅	2.1	('00 LANL)	p > 0	o –		
Ce ₂ RhIn ₈	1.1	('03 LANL)	UGe ₂	0.7	('00 CA/GR)	
CeRhSi ₃	0.8	('05 SE)	UII	0.14	(0403)	
CelrSi ₃	1.6	('06 OS)	NpPd_Al_	50	(07 0.8)	
CeCoGe ₃	0.7	('06 OS)	1 1 1 1 1 1 1 1 1 1 1	0.0	(01 00)	
Ce ₂ Ni ₃ Ge ₅	0.26	('06 OS)	PuCoGa₅	18.5	('02 LANL)	
CeNiGe ₃	0.4	('06 OS)	PuRhGa5	8.7	('03 KA)	
CePd ₅ Al ₂	0,57	('08 OS)				
CeRhGe ₂	0.45	('09 OS)	p > 0			
CePt ₂ In ₇	2.1	('10 LANL)	Am metal	2.2	('05 KA)	
CelrGe ₃	1.5	('10 OS)				

Novel phases near QCPs

• High-T_c superconductivity in cuprates

(G. Bednorz, K.A. Müller '86)

Hidden order and more in URu₂Si₂

(K.H. Kim et al. '04)

Disorder sensitive phase in Sr₃Ru₂O₇

(S. A. Grigera et al. '04)

Non-Fermi-liquid superconductor: CePd₂Si₂

[N.D. Mathur et al., Nature 394, 39 (1998)]

- AF QCP at $p_{\rm c}$ = 28 kbar
- $T_{\rm c} = 0.4$ K at $p = p_{\rm c}$
- NFL normal state
- SC mediated by strong spinfluctuations ?

cf. K. Miyake et al.,

Phys. Rev. B **34**, 6554 (1986).

D.J. Scalapino et al.,

Phys. Rev. B 34, 8190 (1986).

Spin gap in superconducting CeCu₂Si₂

[O. Stockert et al., Nature Phys. 7, 119 (2011)]

Spin excitation gap below T_c at $\hbar\omega_0 \approx 0.2 \text{ meV}$

 $\hbar \omega_0 / k_B T_c \approx 3.9$

T-dependence of spin excitations

[O. Stockert et al., Nature Phys. 7, 119 (2011)]

Quantum critical spin fluctuations in CeCu₂Si₂

[J. Arndt et al. (to be published)]

3D-SDW QCP (HMM) scenario:

 $\Delta \rho \sim T^{1.5}$, $\gamma = \gamma_0 - bT^{0.5}$ (P. Gegenwart et al. '98)

 $\Gamma(Q_{AF}) \sim \chi(Q_{AF})^{-1} \sim T^{3/2} [\chi(Q_{AF}) \Gamma(Q_{AF}) = \text{const. for param. HF metals (Y. Kuramoto '87)]}$

q-dependence of spin excitations

[O. Stockert et al., Nature Phys. 7, 119 (2011)]

paramagnon velocity, v_P

 $\omega_{P} = v_{P}q$; $Q = Q_{AF} \pm q$ $v_{P} = (4.44 \pm 0.86) \text{ meVÅ}$ [(670 ± 130) m/s]

averaged Fermi velocity, v_{F}^{*} $v_{F}^{*} \approx 57 \text{ meV} \text{Å}$ [8600 m/s] [Rauchschwalbe et al. '82] $v_{P}/v_{F}^{*} \approx 8 \%$ (retarded interaction)

$$v_{pn} = (6.9 \pm 0.2) \text{ meVÅ}$$

(J. Arndt et al., to be published)

T - B phase diagram of YbRh₂(Si_{1-x}Ge_x)₂

[J. Custers et al., Nature 424, 524 (2003)]

Crossed-field Hall-effect results

[S. Friedemann et al., PNAS 107, 14547 (2010)]

Limiting values of the Hall and MR crossover

[S. Friedemann et al., PNAS 107, 14547 (2010)]

Fermi surface collapse

[S. Friedemann et al., PNAS 107, 14547 (2010)]

T*(B) agrees with data from ρ , λ , M (P. Gegenwart et al., Science **315**, 969 (2007))

Crossover width

Global phase diagram

[S. Friedemann et al., Nature Phys. 5, 465 (2009)]

- 6 % Ir : intermediate (spin-liquid, SL ?!) phase: $B_{\rm N}$ = 0.15 < B < B* = 45 mT
- 7 % Co: Kondo breakdown within AF phase (like in pure YbRh₂Si₂ under pressure)

- III:6 % Ir
- I :pure YbRh₂Si₂
- II : 7 % Co

y(Ir) > 10 % : Kondo breakdown without magnetism

Interplay between superconductivity and quantum criticality

 $\mathbf{CeCu_2Si_2} (p \approx 0)$

- 3D SDW QCP ("conventional QCP")
- d-wave SC due to SDW fluctuations
- \bigcirc SDW order in other NFL superconductors, e.g., CePd₂Si₂?

YbRh₂Si₂

- coinciding AF & Kondo-breakdown QCPs ("unconventional QCP")
- no SC (T ≥ 10 mK)

Why?

- fm correlations?
- unconventional QCP?
 - cf. CeRhIn₅ under pressure [Shishido et al. (2005); Park et al. (2006)]
- T_c < 10 mK ?
- Cooperation with E. Schuberth (WMI, TUM)

(ac-susc., dc-magn., spec. heat, T > 1 mK)